
UG519: Custom Part Manufacturing
Service User's Guide

This application note explains the process for ordering custom
parts through the Custom Part Manufacturing Service (CPMS). In-
structions for customizing device identity security certificates and
wrapping custom keys are also included.
What is CPMS?

Custom Part Manufacturing Service (CPMS) allows you to customize Silicon Labs hard-
ware – wireless SoCs, modules, MCUs – at the factory. The CPMS self-service web por-
tal guides you through the customization process and its various customizable features
and settings. You can place orders for customized test and production units to our facto-
ries securely via the CPMS portal.

Unlike traditional flash programming, CPMS is a secure provisioning service that ena-
bles you to customize your chips with several highly advanced features such as secure
boot, secure debug, encrypted OTA, public, private and secret keys, secure identity cer-
tificates, and more.

The custom features, identities and certificates are injected on the hardware securely,
quickly, and cost-efficiently at the world’s safest place, the Silicon Labs factories.

Why CPMS?

Securing an IoT device is a highly complicated and costly process - you must generate
public and private keys for secure boot and secure debug, sign code with a private key,
store all the private keys in a Hardware Security Module (HSM), place the public keys
for secure boot and secure debug in one-time-programmable (OTP) memory, flip OTP
bits for secure boot and secure debug, and flash the encrypted code and identity certifi-
cates within the hardware. CPMS streamlines the programming part of this process for
you. Even the most advanced security features, certificates, and identities can be pro-
grammed in a secure, fast, and cost-efficient way at the Silicon Labs factories.

KEY POINTS

This application note exlains how to:
• Start a new custom part
• Customize the following four fields in the

device certificate:
• Common name
• Organization
• Country
• Organizational unit

• Import custom wrapped keys

silabs.com | Building a more connected world. Copyright © 2021 by Silicon Laboratories Rev. 0.1

https://www.silabs.com/developers/custom-part-manufacturing-service

1. Custom Certificates

CPMS allows you to customize the device identity certificate chain. The certificates use the X.509 format, and must conform to
RFC-3280. At this time, CPMS supports customization of four fields in the device certificate:

1. Common name: User-defined, 30-character name that will terminate with the 64-bit EUI of the device (example is
"EUI:xxxxxxxxxxxxxxxx" and will terminate with " S:SE0 ID:MCU" or " S:FL0 ID:MCU" depending on if the device is a Secure Vault
High device or not.)

2. Organization: User-defined, 64-character company name
3. Country: Must be a legitimate country code letter pair (e.g., US)
4. Organizational Unit: User-defined field of up to 64 characters

If there are other certificate customizations you would like to implement, specify them in the "Special Instructions" section in the CPMS.

UG519: Custom Part Manufacturing Service User's Guide
Custom Certificates

silabs.com | Building a more connected world. Rev. 0.1 | 2

https://datatracker.ietf.org/doc/html/rfc3280

2. Key Wrapping

Secure Vault High devices support Key Wrapping, which is a feature where keys are encrypted using a Physically Unclonable Function
(PUF) key. A PUF key is secret, random, and unique to each individual device. PUF keys do not live in flash and are not vulnerable to
flash extraction attacks.

CPMS allows customers to provide their own keys, which will be wrapped by the secure element and stored on the device. This means
that the firmware image does not need to contain the key at any point in production.

To use this feature, you need to provide CPMS with four fields:
1. Key Auth - an 8-byte password that must be provided by software whenever the key is used. This password can be disabled by

setting the Key Auth to 0x0000000000000000.
2. Key Value - the value of the key to be wrapped (max 200 bytes).
3. Key Metadata - 4 bytes of key metadata, including information such as the type of key, allowed uses, length, etc. More information

on how to generate this value for an existing key can be found in section 3.2 Importing Custom Wrapped Keys.
4. Key Address - the address in user flash to which the key should be programmed.

UG519: Custom Part Manufacturing Service User's Guide
Key Wrapping

silabs.com | Building a more connected world. Rev. 0.1 | 3

https://www.silabs.com/security/secure-vault

3. CPMS Use Case Examples

3.1 Configuring a Device for an Untrusted Manufacturing Environment

This example will show how to order a custom part that is secure from the moment it leaves Silicon Labs. It has secure boot, secure
debug lock, and encrypted upgrades enabled so that an untrusted contract manufacturer cannot access the debug port or upload un-
signed and/or unencrypted applications.

This example uses an EFR32MG21B, which is a Secure Vault High part. Secure Vault Base or Mid parts do not have the same custom-
ization options, so some sections of this example will not be applicable to such devices.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 4

3.1.1 CPMS

This section provides detailed information on starting a new custom part in CPMS and configuring the debug lock and Secure Boot.

1. In a browser, open CPMS at https://cpms.silabs.com/login.
2. Log in using your www.silabs.com account credentials.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 5

https://cpms.silabs.com/login
http://www.silabs.com

3. Click "Create a new Custom Part":

a. Part: Select any Secure Vault Mid or High part. This example used "EFR32MG21B010F1024IM32-B".

b. Name: Enter "Example-1". This name will be used within CPMS to help differentiate between custom devices.
c. Estimated Product Order Volume: Select any of the options.
d. Estimated First Volume Order Time: Select any of the options.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 6

4. Click "Customize". This takes you to the part customization page. Change the following configurations (configurations not listed can
be left as the default):

a. Debug Lock: Select "Secure".

b. Configure Secure Boot, Flash Lock, and Tamper Settings: On. Turn off "Require Verify Certificate before secure boot", since
this example will not use certificates.

c. Before we can enter the keys and images, we need to generate them. This will be covered in the following sections.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 7

3.1.2 Generating the Application

Follow the instructions below to generate and configure an application.
1. Open "Simplicity Studio".
2. In the Launcher view, click "EXAMPLE PROJECTS & DEMOS".
3. Search for "blink", and select the Platform - Blink Bare-metal project.
4. Click "Finish".
5. There should now be a blink_baremetal project open in the Simplicity IDE view. Open blink_baremetal.slcp.

6. Click on the "SOFTWARE COMPONENTS" tab.
7. In the Search bar, search for “bootloader”.
8. Click on "Platform > Bootloader > Bootloader Application Interface", and click "Install".

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 8

9. The application image will need an application_properties.c file as shown below to enable secure boot. The ".cert" pointer is set
to NULL to disable the application certificate option. The signatureType and signatureLocation fields are filled by Simplicity
Commander when signing the application image using the convert command.

 #include <stddef.h>
 #include "application_properties.h"

 // Application version number (uint32_t) for anti-rollback
 #define APP_PROPERTIES_VERSION (0UL)

 // Application properties for secure boot
 const ApplicationProperties_t sl_app_properties = {
 .magic = APPLICATION_PROPERTIES_MAGIC,
 .structVersion = APPLICATION_PROPERTIES_VERSION,
 .signatureType = APPLICATION_SIGNATURE_NONE,
 .signatureLocation = 0,
 .app = {
 .type = APPLICATION_TYPE_MCU,
 .version = APP_PROPERTIES_VERSION,
 .capabilities = 0UL,
 .productId = { 0U },
 },
 .cert = NULL,
 .longTokenSectionAddress = NULL,
 };

10. Now that the configuration is set, "Build" the project. This will generate binaries for the project.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 9

3.1.3 Generating the Bootloader

Follow the steps below to generate and configure a bootloader.
1. Now go back to the Launcher and search for "bootloader".
2. Locate and "Create" the "Internal Storage Bootloader (single image on 1MB device)" example.
3. Open bootloader-storage-internal-single.isc.
4. Click on the "Plugins" tab, then select "Bootloader Core, provides API: core".
5. Click "Require encrypted firmware upgrade files" and "Enable Secure Boot".

6. At the top right, click on "Generate".
7. Now that the files have been generated, "Build" the project (if the build button is greyed out, you may need to click on the project in

the Project Explorer).

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 10

3.1.4 Generating the Sign Key, the Command Key, and the OTA Decryption Key

Enabling secure boot and secure debug requires importing public keys. Ideally, these keys would be generated and managed by an
HSM. This example will use Commander.

1. Create a sign key pair for secure boot:

commander util genkey --type ecc-p256 --privkey cpms-sign-priv.pem --
pubkey cpms-sign-pub.pem

2. Create a command key pair for secure debug:

commander util genkey --type ecc-p256 --privkey cpms-cmd-priv.pem --
pubkey cpms-cmd-pub.pem

3. Create an OTA decryption/encryption key for GBL upgrades:

commander util genkey --type aes-ccm --outfile cpms-gbl.txt

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 11

3.1.5 Signing and Merging the Application and Bootloader Images

We now need to prepare our application and bootloader for CPMS. First, we need to sign the images. Then, since CPMS requires the
firmware image to be in one file, we need to merge the signed hex files. We will do this using the Simplicity Commander command line
interface.

1. Open a terminal and navigate to your Simplicity Studio workspace.
2. Sign the bootloader:

commander convert "internal-storage-bootloader-single\GNU ARM v10.2.1 -
Default\internal-storage-bootloader-single.hex" --secureboot --keyfile
cpms-sign-priv.pem --outfile cpms-btl-signed.hex

This will create the cpms-btl-signed.hex signed image file in your workspace.

3. Sign the application:

commander convert "blink_baremetal\GNU ARM v10.2.1 - Default\blink_baremetal.hex" --secureboot --keyfile
cpms-sign-priv.pem --outfile cpms-app-signed.hex

This will create the cpms-app-signed.hex signed image file in your workspace.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 12

4. Merge the signed hex files:

commander convert cpms-app-signed.hex cpms-btl-signed.hex -o cpms-merged.hex

This will create cpms-merged.hex in your workspace.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 13

3.1.6 Programming the Keys and Flash Memory

This section describes how to upload the public sign key and the merged signed hex file.
1. In CPMS, return to the "Standard Security Keys" section.
2. Click on the blue upload button in the "Secure Boot Key" field, then select the cpms-sign-pub.pem file.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 14

3. Click on the blue upload button in the "Command Key" field, then select the cpms-cmd-pub.pem file.

4. For the OTA Decryption Key, copy the key value (in hex) from cpms-gbl.txt into the “OTA Decryption Key” field.

5. Scroll down to the "Flash Programming" section.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 15

trboyd
Sticky Note
should this be ABCDEF?

6. "Firmware Type:" Select "App and Bootloader".

7. Click on "CLICK HERE OR DRAG DROP TO UPLOAD A FILE".
8. Navigate to your workspace. On Windows this will be in C:/Users/<username>/SimplicityStudio/v5_workspace.
9. Select cpms-merged.hex and click "Open". CPMS only accepts Intel Hex files for firmware images.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 16

10. You should now be able to see the binary for the application in CPMS.

11. Scroll to the top of the page, and click "PROCEED TO REVIEW".

12. You can now review the pricing for the custom part and the security configurations you've entered.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 17

3.2 Importing Custom Wrapped Keys

To import custom wrapped keys into CPMS, you need four fields: value, address, auth, and metadata. The following examples will
show how to get the metadata value for an asymmetric and a symmetric key.

Example #1: Importing Custom Wrapped Asymmetric Keys

1. In Simplicity Studio, in the Launcher view click on "EXAMPLE PROJECTS & DEMOS".
2. Search for "SE Manager".
3. Create a project from the "Platform - SE Manager Digital Signature (ECDSA and EdDSA)" example.

4. CPMS will automatically wrap your key and write it into flash. To emulate that for testing, we will use the Memory System Controller
to write the key into flash. To enable the MSC, first open se_manager_signature.slcp.

5. Open the "SOFTWARE COMPONENTS" tab.
6. Search for "msc".
7. Click on the MSC Peripheral and click "Install".

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 18

8. We will modify the "create_wrap_asymmetric_key" function of app_se_manager_signature.c to use our "CPMS key". Instead of
generating a key, we will import our ecc key. In app_se_manager_signature.c line 255, replace the lines:

 print_error_cycle(sl_se_generate_key(&cmd_ctx, &asymmetric_key_desc),
 &cmd_ctx);

with the following:

 // YOUR KEY VALUE GOES HERE:
 static uint8_t user_key[64] =
 {
 0x79, 0x7D, 0x86, 0xE3, 0x5B, 0xAA, 0x03, 0xA5,
 0xEE, 0x09, 0xAB, 0x5E, 0x7E, 0xB1, 0x2D, 0xC3,
 0x92, 0xFC, 0xCE, 0xDC, 0xD0, 0x2A, 0xB0, 0xF7,
 0x56, 0x5E, 0x73, 0x30, 0x86, 0x1D, 0xAE, 0xD5,
 0xDD, 0x8A, 0x84, 0xA2, 0x87, 0x0F, 0xCC, 0x2B,
 0x70, 0x66, 0xAE, 0xE0, 0x88, 0x44, 0x2C, 0xCC,
 0x0C, 0x53, 0xCE, 0x9D, 0x26, 0xBB, 0xB3, 0x04,
 0xA8, 0xB7, 0xB9, 0xE5, 0x20, 0x43, 0x62, 0xAE
 };

 sl_se_key_descriptor_t plaintext_desc = {
 .type = key_type,
 .flags = SL_SE_KEY_FLAG_ASYMMETRIC_BUFFER_HAS_PRIVATE_KEY
 | SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY,
 .storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
 .storage.location.buffer.pointer = user_key,
 .storage.location.buffer.size = 64
 };

 if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key_desc) != SL_STATUS_OK)
 return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the asymmetric_key_buf that asym-
metric_key_desc.storage.location.buffer.pointer is pointing to.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 19

9. Next, we need to write the wrapped key blob into flash. Add the following lines to create_wrap_asymmetric_key:

 // YOUR KEY ADDRESS GOES HERE:
 unsigned int wrapped_key_address = 0x00080000;

 printf("\nWriting key into flash at 0x%08x...\n", wrapped_key_address);

 // Clear out the old wrapped key
 MSC_ErasePage((uint32_t*)wrapped_key_address);

 // Flash the new wrapped key
 MSC_WriteWord((uint32_t*)wrapped_key_address, asymmetric_key_buf,
sizeof(asymmetric_key_buf));

 // Update the key descriptor to point to the key in flash
 asymmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

10. Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_asymmetric_key:

 unsigned int keyspec;

 if (sli_se_key_to_keyspec(&asymmetric_key_desc, &keyspec) != SL_STATUS_OK)
 return SL_STATUS_FAIL;

 printf("\nKeyspec: 0x%08x\n", keyspec);

 return SL_STATUS_OK;

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 20

11. Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-
ate_wrap_symmetric_key, edit the symmetric_key_desc.flags field to remove SL_SE_FLAG_ASYMMETRIC_BUF-
FER_HAS_PUBLIC_KEY and add SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line 229):

 asymmetric_key_desc.flags = SL_SE_KEY_FLAG_ASYMMETRIC_BUFFER_HAS_PRIVATE_KEY
 | SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY
 | SL_SE_KEY_FLAG_NON_EXPORTABLE
 | SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

12. Build the project.

13. Flash to the target device.

14. In the "Debug Adapters" window, right click on the adapter for your device and click "Launch Console . . ."

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 21

15. Click on the "Serial 1" tab, then send "Enter" to start the console.

16. Reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or volatile. Type a "Space" then
"Enter" to select the second option, "wrapped".

17. Type "Enter" four more times and you will see the keyspec printed to the console. When entering a custom wrapped key into
CPMS, this value is the "Key Metadata" value.

18. Now that we have the key wrapped and stored in flash, we want to see that the program can use it without having the plaintext key
anywhere in the application. Go back to app_se_manager_signature.c and comment out lines 255 to 278 and lines 283 to 289.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 22

19. Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing the
value of the key.

20. Repeat steps 12 to 17 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander device
unlock command, for instance), this application will fail - it needs the wrapped key to be stored in flash by a previous process.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 23

Example #2: Importing Custom Wrapped Symmetric Keys

1. In Simplicity Studio, in the Launcher view click on "EXAMPLE PROJECTS & DEMOS".
2. Search for "SE Manager".
3. Create a project from the "Platform - SE Manager Block Cipher" example:

4. CPMS will automatically wrap your key and write it into flash. To emulate that for testing, we will use the Memory System Controller
to write the key into flash. To enable the MSC, first open se_manager_block_cipher.slcp.

5. Open the "SOFTWARE COMPONENTS" tab.
6. Search for "msc".
7. Click on the MSC Peripheral and click "Install".

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 24

8. We will modify the "create_wrap_symmetric_key" function of app_se_manager_block_cipher.c to use our "CPMS key". Instead of
generating a key, we will import our aes key. In app_se_manager_block_cipher.c line 259, replace the lines:

 print_error_cycle(sl_se_generate_key(&cmd_ctx, &symmetric_key_desc),
 &cmd_ctx);

with the following:

 // YOUR KEY VALUE GOES HERE:
 static uint8_t user_key[16] =
 {
 0x70, 0xF4, 0x82, 0x4E, 0x49, 0xBD, 0x97, 0xAB,
 0x65, 0x65, 0x32, 0x22, 0xA0, 0x70, 0xB5, 0x16
 };

 sl_se_key_descriptor_t plaintext_desc = {
 .type = SL_SE_KEY_TYPE_AES_128,
 .flags = 0,
 .storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
 .storage.location.buffer.pointer = user_key,
 .storage.location.buffer.size = 16
 };

 if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &symmetric_key_desc) != SL_STATUS_OK)
 return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the symmetric_key_buf that sym-
metric_key_desc.storage.location.buffer.pointer is pointing to.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 25

9. Next, we need to write the wrapped key blob into flash. Add the following lines to create_wrap_symmetric_key:

 // YOUR KEY ADDRESS GOES HERE:
 unsigned int wrapped_key_address = 0x00080000;

 printf("Writing key into flash at 0x%08x...\n", wrapped_key_address);

 // Clear out the old wrapped key
 MSC_ErasePage((uint32_t*)wrapped_key_address);

 // Flash the new wrapped key
 MSC_WriteWord((uint32_t*)wrapped_key_address, symmetric_key_buf, sizeof(symmetric_key_buf));

 // Update the key descriptor to point to the key in flash
 symmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

10. Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_symmetric_key:

 unsigned int keyspec;

 if (sli_se_key_to_keyspec(&symmetric_key_desc, &keyspec) != SL_STATUS_OK)
 return SL_STATUS_FAIL;

 printf("\nKeyspec: 0x%08x\n", keyspec);

 return SL_STATUS_OK;

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 26

11. Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-
ate_wrap_symmetric_key, edit the symmetric_key_desc.flags field to include SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line
247):

 symmetric_key_desc.flags = SL_SE_KEY_FLAG_NON_EXPORTABLE | SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

12. Build the project.

13. Flash to the target device.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 27

14. In the "Debug Adapters" window, right click on the adapter for your device and click "Launch Console . . ."

15. Click on the Serial 1 tab, then reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or
volatile. Type a Space, then "Enter" to select the second option, "wrapped".

16. Type "Enter" once more, and you will see the keyspec printed to the console. When entering a custom wrapped key into CPMS,
this value is the "Key Metadata" value.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 28

17. Type "Enter" two more times to verify that the key can be used without error. Note that if you type "Enter" after this, the program
will try to use that key as a ChaCha20-Poly1305 key, and it will fail.

18. Now that we have the key wrapped and stored in flash, we want to see that the program can use it without having the plaintext key
anywhere in the application. Go back to app_se_manager_block_cipher.c and comment out lines 259 to 275 and lines 280 to
286.

19. Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing the
value of the key.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 29

20. Repeat steps 11 to 15 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander device
unlock command, for instance), this application will fail - it needs the wrapped key to be stored in flash by a previous process.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

silabs.com | Building a more connected world. Rev. 0.1 | 30

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Custom Certificates
	2. Key Wrapping
	3. CPMS Use Case Examples
	3.1 Configuring a Device for an Untrusted Manufacturing Environment
	3.1.1 CPMS
	3.1.2 Generating the Application
	3.1.3 Generating the Bootloader
	3.1.4 Generating the Sign Key, the Command Key, and the OTA Decryption Key
	3.1.5 Signing and Merging the Application and Bootloader Images
	3.1.6 Programming the Keys and Flash Memory

	3.2 Importing Custom Wrapped Keys

