
AN1218: Series 2 Secure Boot with RTSL

This application note describes the design of Secure Boot with
RTSL (Root of Trust and Secure Loader) on Series 2 devices. It
also provides examples of how to implement the Secure Boot
process.
For more information on using the Gecko Bootloader with Series 2 devices, see the fol-
lowing:
• UG103.6: Bootloader Fundamentals
• UG266: Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower
• UG489: Silicon Labs Gecko Bootloader User’s Guide for GDSK 4.0 and Higher

KEY POINTS

• Compares the Secure Boot process in
Series 1 and Series 2 devices

• Describes the Series 2 Secure Boot with
RTSL components and process

• Provides examples of configuring Series 2
devices for the Secure Boot process

• Recovers secure boot failure devices

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.9

1. Series 2 Device Security Features

Protecting IoT devices against security threats is central to a quality product. Silicon Labs offers several security options to help devel-
opers build secure devices, secure application software, and secure paths of communication to manage those devices. Silicon Labs’
security offerings were significantly enhanced by the introduction of the Series 2 products that included a Secure Engine. The Secure
Engine is a tamper-resistant component used to securely store sensitive data and keys and to execute cryptographic functions and
secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The Secure Engine
may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations are used:
• HSE - Hardware Secure Engine
• VSE - Virtual Secure Engine
• SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available, depending on the
part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to UG103.05 for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

" VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Note:
1. The features of different Secure Vault levels can be found in https://www.silabs.com/security.
2. UG103.05.

Secure Vault Mid consists of two core security functions:
• Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is au-

thenticated before being authorized for execution.
• Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock them

when access is required by an authorized entity.

Secure Vault High offers additional security options:
• Secure Key Storage: Protects cryptographic keys by “wrapping” or encrypting the keys using a root key known only to the HSE-SVH.
• Anti-Tamper protection: A configurable module to protect the device against tamper attacks.
• Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the source or

target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing and manufac-
turing, and after the device is in the field.

AN1218: Series 2 Secure Boot with RTSL
Series 2 Device Security Features

silabs.com | Building a more connected world. Rev. 0.9 | 2

https://www.silabs.com/security
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf

1.1 User Assistance

In support of these products, Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes the key
security documents:

Document Summary Applicability

AN1190: Series 2 Secure Debug How to lock and unlock Series 2 debug access, including
background information about the SE

Secure Vault Mid and High

AN1218: Series 2 Secure Boot with
RTSL (this document)

Describes the secure boot process on Series 2 devices using
SE

Secure Vault Mid and High

AN1247: Anti-Tamper Protection Con-
figuration and Use

How to program, provision, and configure the anti-tamper
module

Secure Vault High

AN1268: Authenticating Silicon Labs
Devices using Device Certificates

How to authenticate a device using secure device certificates
and signatures, at any time during the life of the product

Secure Vault High

AN1271: Secure Key Storage How to securely “wrap” keys so they can be stored in non-
volatile storage.

Secure Vault High

AN1222: Production Programming of
Series 2 Devices

How to program, provision, and configure security information
using SE during device production

Secure Vault Mid and High

1.2 Key Reference

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because terminology can
sometimes be confusing, the following table lists the key names, their applicability, and the documentation where they are used.

Key Name Customer Programmed Purpose Used in

Public Sign key (Sign Key Public) Yes Secure Boot binary authentication and/or OTA
upgrade payload authentication

AN1218 (primary),
AN1222

Public Command key (Command
Key Public)

Yes Secure Debug Unlock or Disable Tamper com-
mand authentication

AN1190 (primary),
AN1222, AN1247

OTA Decryption key (GBL De-
cryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware up-
grades

AN1222 (primary),
UG266/UG489

Attestation key aka Private De-
vice Key

No Device authentication for secure identity AN1268

1.3 SE Firmware

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security features. Refer
to AN1222 for the procedure to upgrade the SE firmware and UG103.05 for the latest SE Firmware shipped with Series 2 devices and
modules.

AN1218: Series 2 Secure Boot with RTSL
Series 2 Device Security Features

silabs.com | Building a more connected world. Rev. 0.9 | 3

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf

2. Secure Boot Process

2.1 Introduction

The purpose of Secure Boot is to protect the integrity of the behavior of the system. Because the behavior of the system is defined by
the firmware running on it, Secure Boot acts to ensure the authenticity and integrity of the firmware. Secure Boot is a foundational com-
ponent of platform security, and without it, other security aspects such as secure storage, secure transport, secure identity, and data
confidentiality can often be subverted through the injection of malicious code.

Secure Boot works as a process by which each piece of firmware is validated for authenticity and integrity before it is allowed to run.
Each authenticated module can also validate additional modules before executing them, forming a chain of trust. If any module fails its
security check, it is not allowed to run, and program control will typically stall in the validating module. In most lightweight IoT systems,
the behavior of a Secure Boot failure is to cause the device to stop working until an authentically signed image can be loaded onto it.
Whereas this may seem extreme, it is a better outcome than a smart light bulb being repurposed to mine crypto-currency, or a smart
speaker being repurposed as a surveillance device on the end user’s private conversations.

The first link in the chain of trust is the root of trust. This is often the weakest link in the Secure Boot chain because the root of trust
itself is not checked for authenticity or integrity. The security strength of the root of trust lies in its immutability. The strongest roots of
trust have their firmware origin in ROM and use a Public Sign Key that is also located in ROM.

Wireless SoC Series 1 and Series 2 devices both use a two-stage boot design consisting of a non-upgradable first stage root of trust
followed by an upgradable second stage. In Series 1 devices, the root of trust (also called the first-stage bootloader) is in flash rather
than ROM, and the upgradable portion (the main bootloader) is checked for integrity using a CRC32 checksum but is not checked for
authenticity using a Public Sign Key. In Series 2 devices, the root of trust is in ROM, and the upgradable portion is checked both for
integrity and authenticity.

The Secure Boot with RTSL is implemented by Root code executed by the Hardware Secure Engine (HSE) or the Cortex-M33 operat-
ing in Root Mode (VSE). For more information about SE, see section "Secure Engine Subsystem" in AN1190: Series 2 Secure Debug.

Silicon Labs provides Custom Part Manufacturing Service (CPMS) to customize the users' security features and settings.

This application note uses the following abbreviations:
• FSB - First Stage Bootloader
• SSB - Second Stage Bootloader
• GBL - Gecko Bootloader
• RTSL - Root of Trust and Secure Loader
• HSM - Hardware Security Module
• OTP - One-Time Programmable
• WSTK - Wireless Starter Kit
• GSDK - Gecko Software Development Kit
• ECDSA-P256-SHA256 - Elliptic Curve Digital Signature Algorithm aka ECSDA using a P-256 curve and a SHA256 hash
• PEM (.pem) - Privacy Enhanced Mail
• DER (.der) - Distinguished Encoding Rules

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 4

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/developers/custom-part-manufacturing-service
https://github.com/SiliconLabs/gecko_sdk

2.2 ECDSA-P256-SHA256 Secure Boot in Series 1 Devices

The Secure Boot process for Series 1 (SVB) devices originates in flash, typically with the execution of the first stage of GBL. The first
stage of GBL checks to see if an upgrade is pending for the second stage of GBL. If so, it processes the upgrade of the second stage
and then executes it. Otherwise, it just executes the second stage. If Secure Boot is enabled, the second stage of GBL checks the
integrity and authenticity of the application image before executing it. If the integrity check fails, program control remains in the SSB.
The following figure illustrates the Secure Boot process on Series 1 devices.

Figure 2.1. Series 1 ECDSA-P256-SHA256 Secure Boot Process

See UG266/UG489 for more information to generate and download signed firmware images using Simplicity Commander.

2.3 ECDSA-P256-SHA256 Secure Boot in Series 2 Devices

For Series 2 devices, the Secure Engine (SE) implements the FSB to authenticate and upgrade the SSB. The GBL implements the
SSB (aka Main Bootloader in UG266/UG489) to authenticate and upgrade the application firmware.

Refer to the "Gecko Bootloader Security Features" section in UG266/UG489 and ECDSA-P256-SHA256 Secure Boot example for more
information about the ECDSA-P256-SHA256 secure boot process in Series 2 devices.

Note: It is possible to have a 2-stage design to skip the SSB between FSB and application. However, the application cannot be upgra-
ded if discarding the SSB, and this application note assumes the SSB is present.

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 5

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

2.3.1 HSE

In HSE-SVM and HSE-SVH devices, the Secure Boot process originates in ROM contained in the security co-processor (HSE). The
following figures illustrate the Secure Boot process and flow on Series 2 HSE devices.

Figure 2.2. Series 2 HSE ECDSA-P256-SHA256 Secure Boot Process

Figure 2.3. Series 2 HSE ECDSA-P256-SHA256 Secure Boot Flow

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 6

2.3.2 VSE

In VSE-SVM devices, the host MCU (Cortex-M33) assumes an elevated security state out of reset and securely boots itself from code
that originates in ROM. The following figures illustrate the Secure Boot process and flow on Series 2 VSE devices.

Figure 2.4. Series 2 VSE ECDSA-P256-SHA256 Secure Boot Process

Figure 2.5. Series 2 VSE ECDSA-P256-SHA256 Secure Boot Flow

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 7

2.4 Certificate-based Secure Boot in Series 2 Devices

Refer to the "Gecko Bootloader Security Features" section in UG266/UG489 and Certificate-Based Secure Boot example for details
about the certificate-based Secure Boot process in Series 2 devices.

The certificate-based Secure Boot uses key delegation to minimize the exposure of the Private Sign Key, reducing the chance to re-
voke the Public Sign Key.

If the certificate’s private key is leaked, all devices that have been programmed with that certificate are at risk until they can be updated
with an image containing a certificate with a higher version.

2.5 Secure Loader

In Series 2 devices, the Secure Loader is firmware pre-loaded into the chip. Silicon Labs maintains the Secure Loader and deploys
through secure upgrade packages. It is the functional equivalent of the first-stage GBL on Series 1 devices (see UG266/UG489 for
more information). The Secure Loader validates the authenticity and integrity of a staged image before performing an upgrade opera-
tion. The Secure Loader requires the staged image to reside on-chip and the staged image must not overlap with the target destination
address range. Firmware images that originate from off-chip, either off-chip storage, external NCP host interface, or through an OTA
update procedure are expected to be staged either by the application or by SSB before calling the Secure Loader to perform the up-
grade.

Figure 2.6. Series 2 Secure Loader Example

2.6 Secure Boot Time

Secure boot extends the recovery time from all sources of device reset. The duration of each authentication operation depends on the
factors below:
• Computes the SHA-256 digest (32 bytes) of the associated image, which is proportional to the size of the firmware image.
• Verifies the ECDSA-P256 signature of the SHA-256 digest above, which is independent of image size.
• The clock frequency of the Crypto Engine, which is the HSE or CRYPTOACC in VSE devices.

Table 2.1. Authentication Duration

Authentication Enable/Disable Duration

FSB code Enable (cannot disable) FSB code size dependent

SSB code Disable by default SSB code size and SE firmware version dependent

Application code Disable by default Application code size and SSB firmware (GBL) version dependent

Note:
• It will extend the boot time for certificates authentication if using Certificate-Based Secure Boot.
• Refer to device-specific datasheets (like EFR32MG21B) for data about the boot timing of Series 2 devices.
• Refer to 2.7 Secure Boot Configuration on how to enable the SSB and application code authentication.

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 8

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/data-sheets/efr32mg21b-datasheet.pdf

2.7 Secure Boot Configuration

The following sections describe how to configure the Secure Boot of the SSB (GBL) and application firmware.

2.7.1 SSB

In Series 2 devices, the immutable OTP memory stores the Public Sign Key and Secure Boot Enable flag. The user cannot change its
respective value once either is programmed. Once the Public Sign Key is provisioned, it remains provisioned to that key value for the
life of the device. Once Secure Boot is enabled, it remains enabled for the life of the device. Both of these assignment operations are
IRREVOCABLE.

The Public Sign Key used for Series 2 devices is the public portion of an ECDSA key pair over the NIST prime curve P-256. The Public
Sign Key is a customer key and is typically provisioned during the initial product manufacturing and device programming phase. It is
common for all products that share the same firmware image to be loaded with the same Public Sign Key. The key loaded into the
device is a public key and has no confidentiality requirements. The private key associated with that public key, which will be used to
sign firmware images or certificates, should be tightly held, ideally secured in the HSM or equivalent key storage instrument.

The user can use Simplicity Commander, SE Manager, or Simplicity Studio to program the Public Sign Key and configure the SSB
Secure Boot in SE OTP.

Figure 2.7. Secure Boot Configuration of SSB

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 9

2.7.2 Application Firmware

The user can use the AppBuilder or Bootloader-core software component in the GBL project to configure the security options of the
application firmware.

The user can reconfigure the Secure Boot configuration of the application firmware by upgrading the GBL with the new custom settings.

Figure 2.8. Security Options of Application Firmware

AN1218: Series 2 Secure Boot with RTSL
Secure Boot Process

silabs.com | Building a more connected world. Rev. 0.9 | 10

3. Examples

3.1 Overview

The following table describes the examples for Series 2 Secure Boot.

Table 3.1. Series 2 Secure Boot Examples

Example Device (Radio Board) SE Firmware Tool

Provision Public Sign Key and Secure
Boot Enabling

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 SE Manager

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Studio 5

Provision GBL Decryption Key EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 SE Manager

Signing for ECDSA-P256-SHA256 Se-
cure Boot

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Signing for Certificate-Based Secure
Boot

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Generate a GBL Upgrade Image File EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Upgrade to Certificate-Based Secure
Boot

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Certificate Revocation EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Upgrade to Secure Boot with RTSL EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 SE Manager & Simplicity
Commander

Recover Devices when Secure Boot
Fails

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 Simplicity Commander

Note: Unless specified in the example, these examples can be applied to other Series 2 devices.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 11

3.1.1 Using Simplicity Commander

1. This application note uses Simplicity Commander v1.12.0. The procedures and console output may be different for the other ver-
sions of Simplicity Commander. The latest version of Simplicity Commander can be downloaded from https://www.silabs.com/
developers/mcu-programming-options.

commander --version

Simplicity Commander 1v12p0b1057

JLink DLL version: 7.52d
Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.
EMDLL Version: 0v17p19b0
mbed TLS version: 2.16.6

Emulator found with SN=440048205 USBAddr=0

DONE

2. The Simplicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the Simplicity Commander folder. The
location for Simplicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander.
For ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

3. If more than one WSTK is connected via USB, the target WSTK must be specified using the --serialno <J-Link serial num-
ber> option.

4. If the WSTK is in debug mode OUT, the target device must be specified using the --device <device name> option.

For more information about Simplicity Commander, see UG162: Simplicity Commander Reference Guide.

3.1.2 Using an External Tool

The Secure Boot examples use the OpenSSL to sign the image files and certificates. The Windows version of OpenSSL can be down-
loaded from https://slproweb.com/products/Win32OpenSSL.html. This application note uses OpenSSL Version 1.1.1h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows (Win64) is
C:\Program Files\OpenSSL-Win64\bin. For ease of use, it is highly recommended to add the path of openssl.exe to the system
PATH in Windows.

3.1.3 Using a Platform Example

Simplicity Studio 5 includes the SE Manager platform example for key provisioning and Secure Boot enabling. This application note
uses platform example of GSDK v3.2.3. The console output may be different on other versions of the GSDK.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the procedures to
create the project and run the example.

3.1.4 Generate Key and Signing

This section describes how to generate a key to sign an image file or certificate for Secure Boot.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 12

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://slproweb.com/products/Win32OpenSSL.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Using Simplicity Commander
1. Run the util genkey command to generate the ECDSA-P256 Sign Key pair (sign_key.pem and sign_pubkey.pem) and Public

Sign Key token file (sign_pubkey.txt). The Simplicity Commander can program the Public Sign Key in token file (sign_pubkey.t
xt) to the top page of the main flash.

commander util genkey --type ecc-p256 --privkey sign_key.pem --pubkey sign_pubkey.pem
--tokenfile sign_pubkey.txt

Generating ECC P256 key pair...
Writing private key file in PEM format to sign_key.pem
Writing public key file in PEM format to sign_pubkey.pem
Writing EC tokens to sign_pubkey.txt...
DONE

Note: The same procedure can apply to generate the bootloader certificate and application certificate key pairs for Certificate-
Based Secure Boot.

2. Use the convert command with the Private Key (like sign_key.pem) from step 1 to sign an image file or certificate. Refer to
3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot and 3.4.4 Signing for Certificate-Based Secure Boot for more information
about the Simplicity Commander signing process.

Using an HSM and Simplicity Commander
1. The user can use HSM to generate the ECDSA-P256 Sign Key pair. The Private Sign Key is securely held in HSM and the Public

Sign Key can be exported in a specific format (like sign_pubkey.pem).

Note: The same procedure can apply to generate the bootloader certificate and application certificate key pairs for Certificate-
Based Secure Boot.

2. Use the util keytotoken command to convert the Public Sign Key from step 1 to token format (sign_pubkey.txt). The Simplici-
ty Commander can program the Public Sign Key in token file (sign_pubkey.txt) to the top page of the main flash.

commander util keytotoken sign_pubkey.pem --outfile sign_pubkey.txt

Writing EC tokens to sign_pubkey.txt...
DONE

3. Use the convert command with --extsign option to prepare an unsigned image or certificate for HSM.
4. Use the Private Key from step 1 to generate a signature for the unsigned image or certificate from step 3.
5. Use the convert command with the signature from step 4 to generate a signed image or certificate. Refer to 3.4.3 Signing for

ECDSA-P256-SHA256 Secure Boot and 3.4.4 Signing for Certificate-Based Secure Boot for more information about the HSM and
Simplicity Commander signing process.

Note: The Simplicity Commander v1.11.0 or above supports signature in DER format. The older version of Simplicity Commander
can only handle signatures in Raw format.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 13

3.2 Provision Public Sign Key and Secure Boot Enabling

The Public Sign Key in SE OTP is used to verify the host image signature or certificate during Secure Boot. The user should provision
this key before setting the Secure Boot enabled flag in SE OTP. On HSE-SVH devices, the user requires to provision the anti-tamper
protection configuration with Secure Boot settings.

If the user sets the SECURE_BOOT_ANTI_ROLLBACK option with Secure Boot, the SE will store the version counter (4 bytes) for anti-
rollback of GBL (SSB) to SE flash and check the bootloader version during an upgrade and on every boot. The version counter will not
roll to 0 if it reaches the maximum value (bootloader cannot upgrade anymore). The anti-rollback does not prevent flashing an older
signed GBL hex image to the device.

The following table describes the anti-rollback protection on signed GBL when SECURE_BOOT_ANTI_ROLLBACK is enabled or disabled.
• The GBL handles the anti-rollback protection when upgrading the GBL through the GBL upgrade image file (.gbl).
• The SE handles the anti-rollback protection (if SECURE_BOOT_ANTI_ROLLBACK enabled) when booting the GBL.

Action SECURE_BOOT_ANTI_ROLLBACK Disable SECURE_BOOT_ANTI_ROLLBACK Enable

Use a GBL upgrade image file Reject upgrade if an equal or lower GBL version
is detected.

Reject upgrade if an equal or lower GBL version
is detected.

Flash and boot a GBL hex image Accept to flash and boot regardless of the GBL
version.

Accept to flash regardless of the GBL version.
But it cannot boot if a lower GBL version is de-
tected.

Note: It needs to execute a mass erase (commander device masserase or commander security erasedevice then reset) before
flashing a GBL hex image (.s37) to the device if SECURE_BOOT_PAGE_LOCK_NARROW or SECURE_BOOT_PAGE_LOCK_FULL
option in SE OTP is enabled.

For simplicity, the Secure Boot examples in this application note do not enable the following options for Secure Boot.
• SECURE_BOOT_PAGE_LOCK_NARROW

• SECURE_BOOT_PAGE_LOCK_FULL

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 14

https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf

3.2.1 Simplicity Commander

The following procedures assume the required files are in the same folder.

1. Follow the procedures in 3.1.4 Generate Key and Signing to generate the ECDSA-P256 Sign Key pair (sign_key.pem and sign_p
ubkey.pem) and Public Sign Key token file (sign_pubkey.txt).

2. Run the security writekey command to provision the Public Sign Key (sign_pubkey.pem). The Public Sign Key cannot be
changed once written.

commander security writekey --sign sign_pubkey.pem --device EFR32MG21A010F1024 --serialno 440048205

Device has serial number 000000000000000014b457fffe045b21

==
Please look through any warnings before proceeding.
THIS IS A ONE-TIME command, all code to be run on the device must be signed by this key.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

3. Run the security readkey command to verify the Public Sign Key with the Public Sign Key in the token file (sign_pubkey.txt).

commander security readkey --sign --device EFR32MG21A010F1024 --serialno 440048205

C4AF4AC69AAB9512DB50F7A26AE5B4801183D85417E729A56DA974F4E08A562C
DE6019DEA9411332DC1A743372D170B436238A34597C410EA177024DE20FC819
DONE

4. For Series 2 VSE devices (like EFR32MG22C224F512IM40), run the flash command to program the Public Sign Key in the token
file (sign_pubkey.txt) to the top page of the main flash for ECDSA-P256-SHA256 Secure Boot. It is optional on Series 2 HSE
devices.

commander flash --tokengroup znet --tokenfile sign_pubkey.txt --device EFR32MG22C224F512IM40 --serialno 440048205

Writing 8192 bytes starting at address 0x0007e000
Comparing range 0x0007E000 - 0x0007FFFF (8 KiB)
Programming range 0x0007E000 - 0x0007FFFF (8 KiB)
DONE

Note: The MCU Series 2 devices (like EFM32PG22C200F512IM40) require Simplicity Commander Version 1.12.2 or above to
support the flash --tokengroup znet command.

5. Run the security genconfig command to generate the user_configuration.json file for secure boot.

commander security genconfig --nostore --outfile user_configuration.json --device EFR32MG21A010F1024
--serialno 440048205

DONE

Name Description

SECURE_BOOT_ENABLE If set, verifies the host image on the Cortex-M33 before releasing the Cortex-
M33 from reset.

SECURE_BOOT_VERIFY_CERTIFICATE If set, requires certificate-based signing of the host image.

SECURE_BOOT_ANTI_ROLLBACK If set, prevents secure upgrading to a host image with a lower version than the
image that is currently stored in flash.

SECURE_BOOT_PAGE_LOCK_NARROW If set, locks flash pages that have been validated by the Secure Boot process
to prevent re-flashing by other means than through the SE. Write/erase locks
pages from 0 through the page where the Secure Boot host image signature is
located, not including the last page if the signature is not on a page boundary.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 15

Name Description

SECURE_BOOT_PAGE_LOCK_FULL If set, locks flash pages that have been validated by the Secure Boot process
to prevent re-flashing by other means than through the SE. Write/erase locks
pages from 0 through the page where the Secure Boot host image signature is
located, including the last page if the signature is not on a page boundary.

Note: The host image is the firmware in the device's flash starting address. It is usually the GBL.

6. Use a text editor to modify the default secure boot settings to the desired configurations used in this application note.

Note: If SECURE_BOOT_ENABLE is false, the SE will ignore the other four options regardless they are true or false. The EFR32xG23
and future Series 2 devices do not allow this setting to program to the SE OTP.

7. Run the security writeconfig command to program the secure boot configuration to the SE OTP. The user can execute this
command once per device.

commander security writeconfig --configfile user_configuration.json --device EFR32MG21A010F1024
--serialno 440048205

==

THIS IS A ONE-TIME configuration: Please inspect file before confirming:
user_configuration.json
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

8. Run the security readconfig command to check the secure boot configuration of the device.

commander security readconfig --serialno 440048205

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 16

3.2.2 SE Manager Key Provisioning Platform Example

Click the View Project Documentation link to open the readme file.

1. Modify the default Public Sign Key in public_sign_key[PUB_KEY_SIZE] array in app_process.c to the desired values.

/// Public sign key
SL_ALIGN(4) static const uint8_t public_sign_key[PUB_KEY_SIZE] = {
 0xc4, 0xaf, 0x4a, 0xc6, 0x9a, 0xab, 0x95, 0x12,
 0xdb, 0x50, 0xf7, 0xa2, 0x6a, 0xe5, 0xb4, 0x80,
 0x11, 0x83, 0xd8, 0x54, 0x17, 0xe7, 0x29, 0xa5,
 0x6d, 0xa9, 0x74, 0xf4, 0xe0, 0x8a, 0x56, 0x2c,
 0xde, 0x60, 0x19, 0xde, 0xa9, 0x41, 0x13, 0x32,
 0xdc, 0x1a, 0x74, 0x33, 0x72, 0xd1, 0x70, 0xb4,
 0x36, 0x23, 0x8a, 0x34, 0x59, 0x7c, 0x41, 0x0e,
 0xa1, 0x77, 0x02, 0x4d, 0xe2, 0x0f, 0xc8, 0x19
};

2. Modify the default secure boot settings in init_se_otp_conf() function in app_se_manager_key_provisioning.c to the desired
configuration.

 // Overwrite secure boot options in SL_SE_OTP_INIT_DEFAULT if necessary.
 otp_init.enable_secure_boot = true;
 otp_init.verify_secure_boot_certificate = false;
 otp_init.enable_anti_rollback = true;
 otp_init.secure_boot_page_lock_narrow = false;
 otp_init.secure_boot_page_lock_full = false;

Note: If enable_secure_boot is false, the SE will ignore the other four options regardless of whether they are true or false. The
EFR32xG23 and future Series 2 devices do not allow this setting to program to the SE OTP.

3. Follow the procedures in 3.4.2 Generate an Unsigned Application Image to generate the unsigned application image if the GBL is
present in the device.

4. Build the project and run the application. Follow the procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or
3.4.4 Signing for Certificate-Based Secure Boot if a signed application image is required.

5. Then press SPACE to skip the programming of the AES-128 key (HSE devices only). Optional to press ENTER to program the hard-
coded GBL Decryption Key to HSE OTP.

SE Manager Key Provisioning Example - Core running at 38000 kHz.
 . SE manager initialization... SL_STATUS_OK (cycles: 9 time: 0 us)

 . Get current SE firmware version... SL_STATUS_OK (cycles: 3578 time: 94 us)
 + Current SE firmware version (MSB..LSB): 00010209

 . Read SE OTP configuration... SL_STATUS_COMMAND_IS_INVALID (cycles: 3908 time: 102 us)

 . Press ENTER to program 128-bit AES key in SE OTP or press SPACE to skip.

 . Encrypt 16 bytes plaintext with 128-bit AES OTP key... SL_STATUS_FAIL (cycles: 4627 time: 121 us)

 . Press ENTER to program public sign key in SE OTP or press SPACE to skip.

6. Press ENTER to program the hard-coded Public Sign Key to SE OTP.

 + Warning: The public sign key in SE OTP cannot be changed once written!
 + Press ENTER to confirm or press SPACE to skip if you are not sure.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 17

7. Press ENTER to confirm the operation. The SE returns SL_STATUS_INVALID_PARAMETER if the Public Sign Key is present in SE
OTP.

 . Initialize public sign key... SL_STATUS_OK (cycles: 56052 time: 1475 us)

 . Get public sign key... SL_STATUS_OK (cycles: 8450 time: 222 us)
 + The public sign key (64 bytes):
 C4 AF 4A C6 9A AB 95 12 DB 50 F7 A2 6A E5 B4 80
 11 83 D8 54 17 E7 29 A5 6D A9 74 F4 E0 8A 56 2C
 DE 60 19 DE A9 41 13 32 DC 1A 74 33 72 D1 70 B4
 36 23 8A 34 59 7C 41 0E A1 77 02 4D E2 0F C8 19

 . Press ENTER to program public command key in SE OTP or press SPACE to skip.

 . Initialize public sign key... SL_STATUS_INVALID_PARAMETER (cycles: 4375 time: 115 us)

 . Get public sign key... SL_STATUS_OK (cycles: 8435 time: 221 us)
 + The public sign key (64 bytes):
 C4 AF 4A C6 9A AB 95 12 DB 50 F7 A2 6A E5 B4 80
 11 83 D8 54 17 E7 29 A5 6D A9 74 F4 E0 8A 56 2C
 DE 60 19 DE A9 41 13 32 DC 1A 74 33 72 D1 70 B4
 36 23 8A 34 59 7C 41 0E A1 77 02 4D E2 0F C8 19

 . Press ENTER to program public command key in SE OTP or press SPACE to skip.

8. Press SPACE to skip the programming of the Public Command Key. Optional to press ENTER to program the hard-coded Public
Command Key to SE OTP.

 . Get public command key... SL_STATUS_FAIL (cycles: 4126 time: 108 us)

 . Press ENTER to initialize SE OTP for secure boot configuration or press SPACE to skip.

9. Press ENTER to program the secure boot configuration.

 + Warning: The SE OTP configuration cannot be changed once written!
 + Press ENTER to confirm or press SPACE to skip if you are not sure.

10. Press ENTER to confirm the operation. The SE returns SL_STATUS_COMMAND_IS_INVALID if an invalid setting from step 2 or the se-
cure boot configuration has been programmed in SE OTP.

 . Initialize SE OTP... SL_STATUS_OK (cycles: 267256 time: 7033 us)
 + Read SE OTP configuration... SL_STATUS_OK (cycles: 6865 time: 180 us)
 + Secure boot : Enabled
 + Secure boot verify certificate : Disabled
 + Secure boot anti-rollback : Enabled
 + Secure boot page lock narrow : Disabled
 + Secure boot page lock full : Disabled

 . SE manager deinitialization... SL_STATUS_OK (cycles: 5 time: 0 us)

 . Initialize SE OTP... SL_STATUS_COMMAND_IS_INVALID (cycles: 3989 time: 104 us)

 . SE manager deinitialization... SL_STATUS_OK (cycles: 5 time: 0 us)

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 18

3.2.3 Simplicity Studio

The security operations are performed in the Security Settings of Simplicity Studio. This application note uses Simplicity Studio
v5.2.3.1. The procedures and pictures may be different for the other versions of Simplicity Studio 5.

1. Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Figure 3.1. Debug Adapters Context Menu

2. Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the
Security Settings tab to get the selected device configuration.

Figure 3.2. Configuration on Selected Device

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 19

3. Click [Start Provisioning Wizard…] in the upper right corner to display the Secure Initialization dialog box. Checking the Enable
Version Rollback Prevention of Host Image option is recommended. The Verify intermediate certificate before secure boot
option is for Certificate-based Secure Boot.

Figure 3.3. Secure Initialization Dialog Box

Note: The SECURE_BOOT_PAGE_LOCK_NARROW and SECURE_BOOT_PAGE_LOCK_FULL options are not yet available in
Simplicity Studio.

4. Click [Next >]. The Security Keys dialog box is displayed.

Figure 3.4. Security Keys Dialog Box

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 20

5. Checking Enable Writing Sign Key will automatically enable Secure Boot. The following Secure Boot Warning is displayed. Click
[Yes] to confirm.

Figure 3.5. Secure Boot Warning

6. Open the Public Sign Key token file (sign_pubkey.txt).

MFG_SIGNED_BOOTLOADER_KEY_X : 997011ED1708580BD4A6B7F8AD6EE19B0B8722611FB76A3A5702D5141180E101
MFG_SIGNED_BOOTLOADER_KEY_Y : 0AC8673C8ACC26EE2B534C004F4A4B7EBBC23D04506DD66E3EF0DDC81E3CA55E

7. Copy Public Sign Key (X-point 9970... first, then Y-point 0AC8...) to Key: box under Sign Key:.

Figure 3.6. Enter Public Sign Key

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 21

8. Click [Next >]. The Secure Locks dialog box is displayed. When Secure Boot is enabled, the Debug Locks are not set by default.
Refer to AN1190: Series 2 Secure Debug for more information about these locks.

Figure 3.7. Security Locks Dialog Box

9. Click [Next >] to display the Summary dialog box.

Figure 3.8. Summary Dialog Box

10. If the information displayed is correct, click [Provision]. Click [Yes] to confirm. The Public Sign Key and Secure Boot configuration
cannot be changed once written.

Figure 3.9. One Time Device Provisioning Window

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 22

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

11. The Summary dialog box displays the Provisioning Status.

Figure 3.10. Provisioning Status

12. Click [Done] to exit the provisioning process. The device configuration is updated.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 23

3.3 Provision GBL Decryption Key

The GBL Decryption Key is used to decrypt the GBL upgrade image file payloads during firmware upgrade. The user should provision
this key before enabling the Require encrypted firmware upgrade files option in 3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Soft-
ware Component.

The following figure and table describe two (VSE) or three (HSE) options to select which GBL Decryption Key for GBL upgrade image
file (bootloader, SE, or application) decryption.

Option for GBL Decryption Key Selection GBL Decryption Key Storage

1. Use symmetric key stored in Secure Element stor-
age (HSE devices only and GSDK ≥ v3.0).

The 128-bit symmetric key stored in HSE OTP is used for GBL upgrade image
file decryption.

2. Use symmetric key stored in Application Proper-
ties Struct (GSDK ≥ v4.1).

The 128-bit symmetric key stored in the GBL Application Properties Struct is
used for GBL upgrade image file decryption. The key is stored in the Secure
flash if TrustZone is implemented.

3. Default storage if none of the above options are
selected.

The 128-bit symmetric key stored on the top page of the main flash is used for
GBL upgrade image file decryption. The key is stored in the Non-secure flash if
TrustZone is implemented.

Note:
• Option 2 requires ApplicationProperties_t struct v1.2 or higher (defined in application_properties.h in the Windows folder C
:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\bootloader\api) in GSDK v4.1 or higher to store the
GBL Decryption Key.

/// Major version number of the AppliationProperties_t struct
#define APPLICATION_PROPERTIES_VERSION_MAJOR (1UL)
/// Minor version number of the AppliationProperties_t struct
#define APPLICATION_PROPERTIES_VERSION_MINOR (2UL)

/// Application Properties struct
typedef struct {
 /// @brief Magic value indicating this is an ApplicationProperties_t struct.
 /// Must equal @ref APPLICATION_PROPERTIES_MAGIC
 uint8_t magic[16];
 /// Version number of this struct
 uint32_t structVersion;
 /// Type of signature this application is signed with
 uint32_t signatureType;
 /// Location of the signature. Typically points to the end of the application
 uint32_t signatureLocation;
 /// Information about the application
 ApplicationData_t app;
 /// Pointer to information about the certificate
 ApplicationCertificate_t *cert;
 /// Pointer to Long Token Data Section
 uint8_t *longTokenSectionAddress;
 /// Parser Decryption Key
 const uint8_t decryptKey[16];
} ApplicationProperties_t;

• Option 2 must be implemented before signing the GBL image for ECDSA-P256-SHA256 or certificate-based Secure Boot.
• The options for the GBL Decryption Key are mutually exclusive. Either one of the two (VSE) or three (HSE) key storages will be

selected for decryption.
• From a security point of view, it is highly recommended to use or upgrade to option 1 for HSE devices and option 2 for VSE devices.
• If the GBL Decryption Key in the selected option is compromised, the simple way is to upgrade the GBL to option 2 (if the existing

option is 1 or 3) with the new GBL Decryption Key.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 24

3.3.1 Simplicity Commander

The following procedures describe how to program the GBL Decryption Key for the options below. All procedures assume the required
files are in the same folder.
• Use symmetric key stored in Secure Element storage (HSE devices only and GSDK ≥ v3.0)
• Use symmetric key stored in Application Properties Struct (GSDK ≥ v4.1)
• Default Storage on the Top Page of the Main Flash

1. Generate a 128-bit Symmetric Key

Run the util genkey to generate the token file for the GBL Decryption Key.

commander util genkey --type aes-ccm --outfile aes_key.txt

Using Windows' Cryptographic random number generator
DONE

The aes_key.txt contains the randomly generated AES-128 key. Use the text editor to replace the randomly generated key in aes
_key.txt with the desired GBL Decryption Key as below.

Key randomly generated by 'util genkey'
TOKEN_MFG_SECURE_BOOTLOADER_KEY: 81A5E21FA15286F1DF445C2CC120FA3F

2. (Use symmetric key stored in Secure Element storage) Run the security writekey to provision the GBL Decryption Key. The
GBL Decryption Key cannot be changed once written.

commander security writekey --decrypt aes_key.txt --device EFR32MG21A010F1024 --serialno 440030580

Device has serial number 0000000000000000000d6ffffead3d94

==
Please look through any warnings before proceeding.
THIS IS A ONE-TIME command, any encrypting of GBL files must be done with this key.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

Note: It cannot read back the GBL Decryption Key from the HSE OTP.

3. (Use symmetric key stored in Application Properties Struct) Run the convert command to program the GBL Decryption Key
to the Application Properties Struct of the GBL.

commander convert bootloader-uart-xmodem.s37 --aeskey aes_key.txt --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

Note:
• The --aeskey option in the convert command requires Simplicity Commander v1.12.3 or above.
• The GBL Decryption Key can only be added to the GBL with Application Properties Struct v1.2 or higher.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 25

4. (Default Storage on the Top Page of the Main Flash) Run the flash command to program the GBL Decryption Key in the token
file to the top page of the main flash.

commander flash --tokengroup znet --tokenfile aes_key.txt --device EFR32MG21A010F1024 --serialno 440030580

Writing 8192 bytes starting at address 0x000fe000
Comparing range 0x000FE000 - 0x000FFFFF (8 KB)
Programming range 0x000FE000 - 0x000FFFFF (8 KB)
DONE

Note: The MCU Series 2 VSE devices (like EFM32PG22C200F512IM40) require Simplicity Commander Version 1.12.2 or above
to support the flash --tokengroup znet command.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 26

3.3.2 SE Manager Key Provisioning Platform Example

This example only applies to option 1 for HSE devices. Click the View Project Documentation link to open the readme file.

1. Modify the default GBL Decryption Key in aes_key[16] array in app_process.c to the desired values.

/// 128-bit AES key
SL_ALIGN(4) static const uint8_t aes_key[16] = {
 0x81, 0xa5, 0xe2, 0x1f, 0xa1, 0x52, 0x86, 0xf1,
 0xdf, 0x44, 0x5c, 0x2c, 0xc1, 0x20, 0xfa, 0x3f
};

2. Modify the ciphertext[16] array in app_process.c to the expected ciphertext for AES ECB on 16 bytes zero plaintext to verify
the GBL Decryption Key in step 1.

/// Ciphertext to verify 128-bit AES key
static const uint8_t ciphertext[16] = {
 0x66, 0xd2, 0x0f, 0x99, 0x65, 0x3e, 0xa8, 0xd0,
 0x83, 0x05, 0xa6, 0x39, 0xd4, 0x4e, 0x98, 0xa6
};

3. Follow the procedures in 3.4.2 Generate an Unsigned Application Image to generate the unsigned application image if the GBL is
present in the device.

4. Build the project and run the application. Follow the procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or
3.4.4 Signing for Certificate-Based Secure Boot if a signed application image is required.

5. Then press ENTER to program the hard-coded GBL Decryption Key to HSE OTP.

SE Manager Key Provisioning Example - Core running at 38000 kHz.
 . SE manager initialization... SL_STATUS_OK (cycles: 9 time: 0 us)

 . Get current SE firmware version... SL_STATUS_OK (cycles: 3578 time: 94 us)
 + Current SE firmware version (MSB..LSB): 00010209

 . Read SE OTP configuration... SL_STATUS_COMMAND_IS_INVALID (cycles: 3908 time: 102 us)

 . Press ENTER to program 128-bit AES key in SE OTP or press SPACE to skip.
 + Warning: The 128-bit AES key in SE OTP cannot be changed once written!
 + Press ENTER to confirm or press SPACE to skip if you are not sure.

6. Press ENTER to confirm the operation. The program either returns SL_STATUS_OK or SL_STATUS_INVALID_PARAMETER (already
present) and performs AES ECB encryption to verify the GBL Decryption Key in HSE OTP.

 . Initialize 128-bit AES key... SL_STATUS_OK (cycles: 39059 time: 1027 us)

 . Encrypt 16 bytes plaintext with 128-bit AES OTP key... SL_STATUS_OK (cycles: 11013 time: 289 us)
 + Compare encrypted message with expected ciphertext... OK

 . Press ENTER to program public sign key in SE OTP or press SPACE to skip.

 . Initialize 128-bit AES key... SL_STATUS_INVALID_PARAMETER (cycles: 4474 time: 117 us)

 . Encrypt 16 bytes plaintext with 128-bit AES OTP key... SL_STATUS_OK (cycles: 11001 time: 289 us)
 + Compare encrypted message with expected ciphertext... OK

 . Press ENTER to program public sign key in SE OTP or press SPACE to skip.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 27

7. Press SPACE to skip the programming of the Public Sign Key.

 . Get public sign key... SL_STATUS_FAIL (cycles: 4126 time: 108 us)

 . Press ENTER to program public command key in SE OTP or press SPACE to skip.

8. Press SPACE to skip the programming of the Public Command Key.

 . Get public command key... SL_STATUS_FAIL (cycles: 4126 time: 108 us)

 . Press ENTER to initialize SE OTP for secure boot configuration or press SPACE to skip.

9. Press SPACE to skip the programming of the secure boot configuration.

 . SE manager deinitialization... SL_STATUS_OK (cycles: 10 time: 0 us)

3.4 Secure Boot

The user should usually not enable the Secure Boot during the development phase to avoid a clash on debugging. The Secure Boot is
enabled near firmware release and uses the following sections to validate the configuration and system functionality.

3.4.1 Generate an Unsigned GBL Image

There are two ways to configure the application firmware through a GBL project.
1. Use AppBuilder (.isc file) in GSDK v3.2 and lower.
2. Use Bootloader-core software component (.slcp file) in GSDK v4.0 and higher.

The following notes apply to the AppBuilder and Bootloader-core software component.
• Enabling the Allow use of public key from manufacturing token storage option is mandatory on VSE devices (cannot be disa-

bled in AppBuilder and is discarded in Bootloader-core software component) for ECDSA-P256-SHA256 Secure Boot. The HSE de-
vice ignores this default enabled option if the Public Sign Key has been provisioned in OTP.

• The GBL stores the application version counter at the end of the bootloader flash space if Enable application rollback protection
option (GSDK ≥ v3.0) is enabled. The GBL checks the application version during an upgrade and on every boot. The anti-rollback
does not prevent flashing an older application image to the device.

• The Minimum application version allowed option (GSDK ≥ v3.0) configures the minimum application version that should be al-
lowed to boot. This option maintains the application version counter that will reset to 0 after upgrading the GBL.

• The Enable application rollback protection option is not applicable if the SECURE_BOOT_PAGE_LOCK_FULL in SE OTP is en-
abled. See section "Secure Boot with Application Rollback Protection" in UG266 (for GSDK v3.2 and lower) or UG489 (for GSDK
v4.0 and higher) for details about the application rollback protection.

• The GBL size and starting address are device-dependent. For more information about the bootloader size and starting address on
Series 2 devices, see section "Memory Space For Bootloading" in UG103.6: Bootloader Fundamentals.

Refer to 3.4.5 Generate a GBL Upgrade Image File for the Require signed firmware upgrade files and Require encrypted firmware
upgrade files options on the GBL upgrade image file. For simplicity, the Secure Boot examples in this application note do not enable
these options. Refer to UG266/UG489 for information about these options.

The following sections describe how to build the unsigned GBL image from the UART XMODEM Bootloader (GSDK < v4.1) or Boot-
loader - NCP UART XMODEM (GSDK ≥ v4.1).

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 28

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

3.4.1.1 AppBuilder

This application note uses UART XMODEM Bootloader example v1.12.0 in GSDK v3.2.3. The procedures and pictures may be different
for the other versions of this example.

1. Create a UART XMODEM Bootloader project.
2. The Plugins tab in AppBuilder (bootloader-uart-xmodem.isc) shows the default configurations for the UART XMODEM Boot-

loader example.
3. Use Bootloader Core, provides API: core in the Plugins tab to set up the application firmware configurations.

a. This application note uses the configuration below for ECDSA-P256-SHA256 Secure Boot.

b. This application note uses the configuration below for Certificate-based Secure Boot.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 29

4. Enter a higher version number (default is 0) to the macro BOOTLOADER_VERSION_MAIN_CUSTOMER → Value in the Addi-
tional Macros field on the Other tab for anti-rollback protection of GBL.

5. The default setting of GBL will overwrite the existing application image when upgrading the GBL or SE. It forces to update the ap-
plication image even without changes on the firmware. Use the Appbuilder settings below to keep the existing application image
when upgrading the GBL or SE.

a. Enter the required application image size to the macro BTL_APP_SPACE_SIZE → Value in the Additional Macros field on
the Other tab. Check the -D? checkbox to add this definition to the project.

This application note uses 507904 (496 kB) to replace the default value of ((FLASH_BASE + FLASH_SIZE) -

BTL_APPLICATION_BASE).

b. The Base address of bootloader upgrade image ≥ (BTL_APP_SPACE_SIZE + size of the GBL).

The example in this application note uses EFR32MG21A010F1024:

Base address of bootloader upgrade image = 507904 (496 kB) + 16384 (16 kB for GBL) = 524288 (512 kB)

Note: The default value of Base address of bootloader upgrade image is 32768 (32 kB).

c. The (Base address of bootloader upgrade image + size of the GBL or SE + upgrade file overhead) ≤ the available size of
the device main flash for application use (see project linker file for details).

The example in this application note uses EFR32MG21A010F1024:

512 kB (Base address of bootloader upgrade image) + 16 kB (GBL) or 48 kB (SE) + overhead bytes < 1024 kB (size of main
flash)

For more information about the size of the GBL and SE, see section "Storage Space Size Configuration" in UG266.

Note: It requires GBL v1.11.0 or above to support this feature.

6. Click [Generate] in the right upper corner.
7. In the Generation Successful dialog, click [OK].
8. Build the project to generate the unsigned GBL image file (bootloader-uart-xmodem.s37).

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 30

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf

9. (Optional) Run the util appinfo command to check all available information (application properties) in an unsigned GBL image.
The App version is the GBL version for the SECURE_BOOT_ANTI_ROLLBACK option.

commander util appinfo bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x00002b1c
Signature location : 0x00002d08
Signature type : No signature
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : Bootloader (APPLICATION_TYPE_BOOTLOADER)
App version : 0x010c0000
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has
previously seen certificate based signing, it will not accept direct signing.
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 31

3.4.1.2 Bootloader-core Software Component

This application note uses UART XMODEM Bootloader example v2.0.0 in GSDK v4.0. The procedures and pictures may be different
for the other versions of this example.

1. Create a UART XMODEM Bootloader project.
2. Checking the Installed Components under the SOFTWARE COMPONENTS tab shows the list of installed components (bootloa
der-uart-xmodem.slcp) in the UART XMODEM Bootloader example.

3. Click [Configure] in the Bootloader-core component to open the Bootloader Core Configuration.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 32

4. Use Bootloader Core Configuration in Bootloader-core to set up the application firmware configurations.
a. This application note uses the configuration below for ECDSA-P256-SHA256 Secure Boot.

b. This application note uses the configuration below for Certificate-based Secure Boot.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 33

5. Enter a higher version number (default is 0) to BOOTLOADER VERSION MAIN CUSTOMER for anti-rollback protection of GBL.

6. The default setting of GBL will overwrite the existing application image when upgrading the GBL or SE. It forces to update the ap-
plication image even without changes on the firmware. Use the Bootloader-core settings below to keep the existing application im-
age when upgrading the GBL or SE.

a. Enter the required application image size to the Enter Bootloader App Space Size dialog box after enabling the Use custom
Bootloader Application Size option.

This application note uses 507904 (496 kB) to replace the default value of 0.

b. The Base address of bootloader upgrade image ≥ (Enter Bootloader App Space Size + size of the GBL).

The example in this application note uses EFR32MG21A010F1024:

Base address of bootloader upgrade image = 507904 (496 kB) + 16384 (16 kB for GBL) = 524288 (512 kB)

Note: The default value of Base address of bootloader upgrade image is 32768 (32 kB).

c. The (Base address of bootloader upgrade image + size of the GBL or SE + upgrade file overhead) ≤ the available size of
the device main flash for application use (see project linker file for details).

The example in this application note uses EFR32MG21A010F1024:

512 kB (Base address of bootloader upgrade image) + 16 kB (GBL) or 48 kB (SE) + overhead bytes < 1024 kB (size of main
flash)

For more information about the size of the GBL and SE, see section "Storage Space Size Configuration" in UG489.
7. Click [X] in the right upper corner to exit the Bootloader Core Configuration.
8. Build the project to generate the unsigned GBL image file (bootloader-uart-xmodem.s37).
9. (Optional) Run the convert command to program the GBL Decryption Key to the Application Properties Struct if this GBL

Decryption Key option in GBL (GSDK ≥ v4.1) is selected.

commander convert bootloader-uart-xmodem.s37 --aeskey aes_key.txt --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 34

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

10. (Optional) Run the util appinfo command to check all available information (application properties) in an unsigned GBL image.
The App version is the GBL version for the SECURE_BOOT_ANTI_ROLLBACK option.

commander util appinfo bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x00002b30
Signature location : 0x00002c44
Signature type : No signature
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot if the
device has seen an application with a higher version number.
App type : Bootloader (APPLICATION_TYPE_BOOTLOADER)
App version : 0x02000000
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has previously seen
certificate based signing, it will not accept direct signing.
DONE

Note: For the TrustZone-aware bootloaders, the unsigned GBL image is the combined image of Secure and Non-secure bootloaders.
The Bootloader-core component is installed in the Secure bootloader.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 35

3.4.2 Generate an Unsigned Application Image

This section describes how to generate an unsigned application image for the GBL.
1. For Series 2 devices, the application image should place on the main flash page after the GBL. For more information about the

application starting address, see section "Memory Space For Bootloading" in UG103.6: Bootloader Fundamentals.
2. (Simplicity Studio 4) Refer to the section "Creating Applications for Use with the Bootloader" in AN0042: USB/UART Bootloader

or the Knowledge Article (Simplicity IDE) in Silicon Labs Community to set up the application image start address.
3. (Simplicity Studio 5) The user can use the Bootloader Application Interface component to set up the start address of the appli-

cation image. This application note uses Platform - Blink Bare-metal example in GSDK v3.2.3. The procedures and pictures may
be different on other versions of the GSDK. The following steps can apply to other platform examples in GSDK.

a. Create a Platform - Blink Bare-metal project.
b. The Software Components tab shows the list of available components (blink_bardmetal.slcp) that the user can install in

the project.
c. Select Platform → Bootloader → Bootloader Application Interface.
d. Click [Install].

Note: For the wireless protocol stack example, the Bootloader Application Interface component is already present in the
project.

4. The application image should contain an ApplicationProperties_t struct (defined in application_properties.h in the Win-
dows folder below) declaring the application version, capabilities, and other metadata.

For GSDK v3.2 and lower: C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK VERSION>\plat
form\bootloader\api

For GSDK v4.0 and higher: C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\bootloader\api

Below is an example source file app_properties.c with ApplicationProperties_t struct for Secure Boot on GSDK v3.2 and
lower.

#include <stddef.h>
#include "application_properties.h"

const ApplicationProperties_t sl_app_properties = {
 .magic = APPLICATION_PROPERTIES_MAGIC,
 .structVersion = APPLICATION_PROPERTIES_VERSION,
 .signatureType = APPLICATION_SIGNATURE_NONE,
 .signatureLocation = 0,
 .app = {
 .type = APPLICATION_TYPE_MCU,
 .version = 1UL,
 .capabilities = 0UL,
 .productId = {0U},
 },
};

The signatureType and signatureLocation are filled by Simplicity Commander when signing the application image using the
convert command.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 36

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/application-notes/an0042-efm32-usb-uart-bootloader.pdf
https://community.silabs.com/s/article/using-a-custom-linker-script-in-simplicity-ide-1?language=en_US

5. The following table describes how to add the app_properties.c file in step 4 to Platform - Blink Bare-metal project. For the wire-
less protocol stack example, the app_properties.c file with ApplicationProperties_t struct is already present in the project.

Simplicity Studio 4 & Simplicity Studio 5 with GSDK v3.2 and lower Simplicity Studio 5 with GSDK v4.0 and higher

Manually added Automatically added after installing the Bootloader
Application Interface component in step 3 to the
project.

Note: Refer to the Knowledge Article in Silicon Labs Community to add app_properties.c to the project in Simplicity Studio 4.

6. (Simplicity Studio 4 & Simplicity Studio 5 with GSDK v3.2 and lower) Enter a higher version number to .version in app_prop
erties.c for anti-rollback protection (if enabled) of the application.

7. (Simplicity Studio 5 with GSDK v4.0 and higher) Click [Configure] in the App Properties component under Platform → Boot-
loader to open the App Properties configuration. The example below uses GSDK v4.0. The procedures and pictures may be dif-
ferent on other versions of the GSDK.

Enter a higher version number to Version number for this application dialog box in App Properties settings for anti-rollback
protection (if enabled) of the application.

Note: The app_properties.c is in the Windows folder below.

C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\bootloader\app_properties

8. Build the project to generate the unsigned application image file (blink_bardmetal.s37).

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 37

https://community.silabs.com/s/article/what-are-the-steps-to-add-application-properties-to-a-application-project-x?language=en_US

9. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in an un-
signed application image. The App version is for the Enable application rollback protection option in the AppBuilder or Boot-
loader-core software component.

commander util appinfo blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x00006198
Signature location : Not set (0x00000000)
Signature type : No signature
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : MCU application (APPLICATION_TYPE_MCU)
App version : 0x00000001
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has
previously seen certificate based signing, it will not accept direct signing.
DONE

Note: For the TrustZone-aware applications, the unsigned application image is the combined image of Secure and Non-secure applica-
tions. The ApplicationProperties_t struct is located in the Secure application.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 38

3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot

The following figure describes the signing and verification for ECDSA-P256-SHA256 Secure Boot.

BL image
signature (64 bytes)

BL image
(variable size) Private Sign Key

App image
signature (64 bytes)

App image
(variable size) Private Sign Key

Public Sign Key
in SE OTP

Public Sign Key
in HSE OTP*

SE to Verify

BL to Verify

Sign

Sign

Bootloader (BL)

Application (APP)

Figure 3.11. ECDSA-P256-SHA256 Sign and Verify

Note:
• *The bootloader cannot access the Public Sign Key in VSE OTP to verify the application image. Therefore VSE devices need to

store a Public Sign Key copy on the top page of the main flash (see section "Key Storage" in UG266/UG489).

Device FSB to Verify the Bootloader Image SSB to Verify the Application Image

HSE Use the Public Sign Key in HSE OTP Use the Public Sign Key in HSE OTP

VSE Use the Public Sign Key in VSE OTP Use the Public Sign Key on the top page of the main flash

The HSE device ignores the default enabled Allow use of public key from manufacturing token storage option once the Public Sign
Key has been provisioned.

• To have better protection on the Public Sign Key. The certificate-based Secure Boot is strongly recommended on VSE devices since
the SSB does not require accessing the Public Sign Key to verify the application signature.

The following sections provide two methods to sign the bootloader image and application image files. All procedures assume the re-
quired files are in the same folder.

1. Using Simplicity Commander
2. Using an HSM and Simplicity Commander

Bootloader Image File
1. If the SE OTP is not provisioned, follow the procedures in 3.2.1 Simplicity Commander to set up the ECDSA-P256-SHA256 Secure

Boot configuration for the bootloader.
2. Follow the procedures in 3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component to set up the ECDSA-P256-SHA256

Secure Boot configuration for the user application to generate an unsigned bootloader image.
3. (Using Simplicity Commander) Run the convert command with Private Sign Key to overwrite the unsigned bootloader image

file with the signed bootloader image file (bootloader-uart-xmodem.s37).

commander convert bootloader-uart-xmodem.s37 --secureboot --keyfile sign_key.pem --verify sign_pubkey.pem
--outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Found Application Properties at 0x00002b1c
Writing Application Properties signature pointer to point to 0x00002d08
Setting signature type in Application Properties: 0x00000001
Image SHA256: c53bb8a3fd88a5071bfb71444324bb136b276160318488ff89011bbd269e114e
R = AB62F3A52B13D137FBCC6A2176D4D1852E06B6E4E6B2673DC251FC491450CBDA
S = 9C7C7AF2624165FD90FB3B114E3FA6FE4F4C5625B15C9F3D50DCB04DD06A7B19

Verifying signed image...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 39

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

4. (Using an HSM and Simplicity Commander) Run the convert command with --extsign option to generate an external signing
bootloader image file (bootloader-uart-xmodem.extsign).

commander convert bootloader-uart-xmodem.s37 --secureboot --extsign --outfile bootloader-uart-xmodem

Parsing file bootloader-uart-xmodem.s37...
Found Application Properties at 0x00002b1c
Writing Application Properties signature pointer to point to 0x00002d08
Setting signature type in Application Properties: 0x00000001
Writing to bootloader-uart-xmodem.extsign...
DONE

Use an HSM containing the Private Sign Key to generate the signature for the external signing bootloader image. This example
uses the OpenSSL with the Private Sign Key to simulate this process. The signature is in the bl_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out bl_signature.der bootloader-uart-xmodem.extsign

Run the convert command with the bootloader image signature to overwrite the unsigned bootloader image file with the signed
bootloader image file (bootloader-uart-xmodem.s37).

commander convert bootloader-uart-xmodem.s37 --secureboot --signature bl_signature.der
--verify sign_pubkey.pem --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Parsing signature file bl_signature.der...
R = 0E9FC64F41B55367894908D3ADAC40E8D145E33224C4BAA8151EC3EFD107A154
S = F56230AA6484E55270F22A4D164377CA918F66A367656AB6E10CB3F58641CE84
Found Application Properties at 0x00002b1c
Writing Application Properties signature pointer to point to 0x00002d08
Setting signature type in Application Properties: 0x00000001

Verifying signed image...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

5. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in a signed
GBL image.

commander util appinfo bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x00002b30
Signature location : 0x00002c44
Signature type : ECDSA-P256
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : Bootloader (APPLICATION_TYPE_BOOTLOADER)
App version : 0x02000000
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has
previously seen certificate based signing, it will not accept direct signing.
DONE

6. The signed bootloader image file (.s37) can be used for production programming or for generating a GBL upgrade image file for
bootloader upgrade.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 40

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

7. Run the flash command to program the signed bootloader image (bootloader-uart-xmodem.s37) to the device if the device
does not have a bootloader.

commander flash bootloader-uart-xmodem.s37 --device EFR32MG21A010F1024 --serialno 440048205

Parsing file bootloader-uart-xmodem.s37...
Writing 16384 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x00003FFF (16 KiB)
Programming range 0x00000000 - 0x00001FFF (8 KiB)
Programming range 0x00002000 - 0x00003FFF (8 KiB)
DONE

Application Image File
1. Follow the procedures in 3.4.2 Generate an Unsigned Application Image to generate an unsigned application image for the boot-

loader.
2. (Using Simplicity Commander) Run the convert command with Private Sign Key to overwrite the unsigned application image

file with the signed application image file (blink_baremetal.s37).

commander convert blink_baremetal.s37 --secureboot --keyfile sign_key.pem --verify sign_pubkey.pem
--outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x000064d8
Setting signature type in Application Properties: 0x00000001
Image SHA256: 8b58ec567126aa1f6baa88afc916581477745aca6f47697ec093512fc30dcc6f
R = 056E3AA36BD882B5467D44A56DB7CC1AEE44D45BC9B98FAB05BE2C032573A1F7
S = BE1D27CE7877D0BC761C0F02690CC74251EBE3A458474C573C21B3A738A03577

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 41

3. (Using an HSM and Simplicity Commander) Run the convert command with --extsign option to generate an external signing
application image file (blink_baremetal.extsign).

commander convert blink_baremetal.s37 --secureboot --extsign --outfile blink_baremetal

Parsing file blink_baremetal.s37...
Found Application Properties at 0x00006198
Writing Application Properties signature pointer to point to 0x0000643c
Setting signature type in Application Properties: 0x00000001
Writing to blink_baremetal.extsign...
DONE

Use an HSM containing the Private Sign Key to generate the signature for the external signing application image. This example
uses the OpenSSL with the Private Sign Key to simulate this process. The signature is in the app_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out app_signature.der blink_baremetal.extsign

Run the convert command with the application image signature to overwrite the unsigned application image file with the signed
application image file. (blink_baremetal.s37).

commander convert blink_baremetal.s37 --secureboot --signature app_signature.der --verify sign_pubkey.pem
--outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Parsing signature file app_signature.der...
R = BD5BDC866CE67DA104B1E7B686C45B7BF96F2643154D37ACC63DACDF69C27E89
S = 2DD3BFFAC857A5B0BD8C9B4DDB23D21944D062F8E431D36541B84EF411C1CC92
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x000064d8
Setting signature type in Application Properties: 0x00000001

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

4. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in a signed
application image.

commander util appinfo blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x000061bc
Signature location : 0x000064d8
Signature type : ECDSA-P256
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : MCU application (APPLICATION_TYPE_MCU)
App version : 0x00000001
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has
previously seen certificate based signing, it will not accept direct signing.
DONE

5. The signed application image file (.s37) can be used for production programming or for generating a GBL upgrade image file for
application upgrade.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 42

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

3.4.4 Signing for Certificate-Based Secure Boot

The following figure describes the signing and verification for certificate-based Secure Boot. The user can freely switch between stand-
ard and advanced certificate-based Secure Boot by upgrading the application firmware without and with the application certificate.

Certificate structure
version (1 bytes)
Reserved flags

(3 bytes)
Public BL Key

(64 bytes)

BL certificate
signature (64 bytes)

BL certificate
version (4 bytes)

Private Sign Key

BL image
signature (64 bytes)

BL image
(variable size)

Private BL Key

App image
signature (64 bytes)

App image
(variable size) Private BL Key

Public Sign Key
in SE OTP

Public BL Key in
BL certificate

Public BL Key in
BL certificate

SE to Verify

SE to Verify

BL to Verify

Sign

Sign

Sign

Bootloader (BL)
Certificate

Application (App)

Bootloader (BL)

Certificate structure
version (1 bytes)
Reserved flags

(3 bytes)
Public BL Key

(64 bytes)

BL certificate
signature (64 bytes)

BL certificate version
(4 bytes)

Private Sign Key

BL image
signature (64 bytes)

BL image
(variable size)

Private BL Key

App image
signature (64 bytes)

App image
(variable size)

Private App Key

Public Sign Key
in SE OTP

Public BL Key in
BL certificate

Public App Key in
App Certificate

Certificate structure
version (1 bytes)
Reserved flags

(3 bytes)
Public App Key

(64 bytes)

App certificate
signature (64 bytes)

App certificate
version (4 bytes)

Private BL KeyPublic BL Key in
BL certificate

BL to Verify

Sign

Sign

Sign

Sign

Application (App)
Certificate

Bootloader (BL)
Certificate

Application (App)

Bootloader (BL)

Standard

Advanced

SE to Verify

SE to Verify

BL to Verify

Figure 3.12. Certificate-Based Sign and Verify

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 43

Certificate

The following table describes the elements of a certificate.

Table 3.2. Certificate Structure

Element Description

Certificate structure version The version of the certificate structure.

Reserved flags Reserved in the current certificate structure version.

Certificate public key ECDSA-P256 public key, X and Y coordinates concatenated, used to validate the image.

Certificate version The version of the running certificate.

Certificate signature ECDSA-P256 signature, used for the authentication of the public key and the certificate version.

Note:
• The application_properties.h in the Windows folder below defines the parameters of the certificate structure

(ApplicationCertificate_t).

For GSDK v3.2 and lower: C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK VERSION>\platf
orm\bootloader\api

For GSDK v4.0 and higher: C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\bootloader\api
• The certificate is not in X.509 format.

Private/Public Key Pair

The following table describes two Private/Public Key pairs used in certificates for certificate-based Secure Boot. The user can use Sim-
plicity Commander or HSM to generate these key pairs.

Table 3.3. Certificates and Key Pairs for Certificate-Based Secure Boot Examples

Certificate Private Key Public Key Description

Bootloader (bl_cert.bin) (1) bl_cert_key.pem (Pri-
vate Bootloader Key)

bl_cert_pubkey.pem
(Public Bootloader Key)

The bootloader certificate is signed by the Pri-
vate Sign Key corresponding to the Public Sign
Key in SE OTP.

Application (app_cert.bin) (2) app_cert_key.pem
(Private Application
Key)

app_cert_pubkey.pem
(Public Application Key)

The application certificate is signed by the Pri-
vate Bootloader Key corresponding to the Pub-
lic Bootloader Key in the bootloader certificate.

Note:
1. a. Certificate version in the bootloader certificate < certificate version in SE flash - the certificate is rejected.

b. Certificate version in the bootloader certificate = certificate version in SE flash - the certificate is accepted.
c. Certificate version in the bootloader certificate > certificate version in SE flash - the certificate is accepted. The certificate ver-

sion in SE flash is updated to match (revocation mechanism).
2. The certificate version in the application certificate is compared with the certificate version in the bootloader certificate. The applica-

tion certificate is accepted if its version is equal to or higher than the certificate version in the bootloader certificate.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 44

The following sections provide two methods to sign the bootloader image and application image files. All procedures assume the re-
quired files are in the same folder.

1. Using Simplicity Commander
2. Using an HSM and Simplicity Commander

Bootloader Image File

1. If the SE OTP is not provisioned, follow the procedures in 3.2.1 Simplicity Commander to set up the certificate-based Secure Boot
configuration for the bootloader.

2. Follow the procedures in 3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component to set up the certificate-based Secure
Boot configuration for the user application to generate an unsigned bootloader image.

3. (Using Simplicity Commander) Run the util gencert command with Public Bootloader Key and Private Sign Key to gener-
ate the bootloader certificate (bl_cert.bin). Refer to Table 3.3 Certificates and Key Pairs for Certificate-Based Secure Boot Ex-
amples on page 44 for details about the --cert-version for bootloader certificate.

commander util gencert --cert-type secureboot --cert-version 1 --cert-pubkey bl_cert_pubkey.pem
--sign sign_key.pem --outfile bl_cert.bin

Successfully signed certificate
DONE

Run the convert command with Bootloader Certificate and Private Bootloader Key to overwrite the unsigned bootloader image
file with the signed bootloader image file (bootloader-uart-xmodem.s37).

commander convert bootloader-uart-xmodem.s37 --secureboot --certificate bl_cert.bin
--keyfile bl_cert_key.pem --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Writing certificate to location 0x00002cf0
Private key matches public key in certificate.
Found Application Properties at 0x00002d78
Writing Application Properties signature pointer to point to 0x00002f64
Setting signature type in Application Properties: 0x00000001
Image SHA256: 3cf574b688853a801e8dc98687414db27f886c60c55dbf7fea2d47633df94e8d
R = C866592B4CB7BAD9EFC35985F1B9D52C65C26453D4808597EEEFFB16DC4AA962
S = 94CAA21ED5D7772F96BBF4D24A0711A94DCCB6D4D38DFA45182876B9BE2A8DE3

Verifying signed image...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 45

4. (Using an HSM and Simplicity Commander) Run the util gencert command with Public Bootloader Key and --extsign op-
tion to generate an external signing bootloader certificate (bl_cert.extsign). Refer to Table 3.3 Certificates and Key Pairs for
Certificate-Based Secure Boot Examples on page 44 for details about the --cert-version for bootloader certificate.

commander util gencert --cert-type secureboot --cert-version 1 --cert-pubkey bl_cert_pubkey.pem
--extsign --outfile bl_cert

DONE

Use an HSM containing the Private Sign Key to generate the signature for the external signing bootloader certificate. This example
uses the OpenSSL with the Private Sign Key to simulate this process. The signature is in the bl_cert_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out bl_cert_signature.der bl_cert.extsign

Run the util signcert command with the bootloader certificate signature to generate the bootloader certificate (bl_cert.bi
n).

commander util signcert bl_cert.extsign --cert-type secureboot --signature bl_cert_signature.der
--verify sign_pubkey.pem --outfile bl_cert.bin

R = 065A58EA6CE6BBA44F3C59C6D255A901DBBC55FA97F261658B2026ABC8CD9680
S = 8A0011AA6393BC284B13C8313EE6772030DE07E213E74CA0FEA740F3D33E6518
Successfully verified signature
Successfully signed certificate
DONE

Run the convert command with Bootloader Certificate and --extsign option to generate an external signing bootloader image file
(bootloader-uart-xmodem.extsign).

commander convert bootloader-uart-xmodem.s37 --secureboot --certificate bl_cert.bin --extsign
--outfile bootloader-uart-xmodem

Parsing file bootloader-uart-xmodem.s37...
Writing certificate to location 0x00002cf0
Found Application Properties at 0x00002d78
Writing Application Properties signature pointer to point to 0x00002f64
Setting signature type in Application Properties: 0x00000001
Writing to bootloader-uart-xmodem.extsign...
DONE

Use an HSM containing the Private Bootloader Key to generate the signature for the external signing bootloader image. This exam-
ple uses the OpenSSL with the Private Bootloader Key to simulate this process. The signature is in the bl_signature.der.

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out bl_signature.der bootloader-uart-xmodem.extsign

Run the convert command with the Bootloader Certificate and bootloader image signature to overwrite the unsigned bootload-
er image file with the signed bootloader image file (bootloader-uart-xmodem.s37).

commander convert bootloader-uart-xmodem.s37 --secureboot --certificate bl_cert.bin
--signature bl_signature.der --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Writing certificate to location 0x00002cf0
Parsing signature file bl_signature.der...
R = 7AAA17E8F875F2572AF7692079ED2C48A1329D3AA2E616E7E13007CE68C32A21
S = 6E5F1ACD929A1AC05DE9F4BC5CBDE0E076B32EDA353C5E571C7850AAB86BCCFB
Found Application Properties at 0x00002d78
Writing Application Properties signature pointer to point to 0x00002f64
Setting signature type in Application Properties: 0x00000001

Verifying signed image...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 46

5. (Optional) Run the util verifysign command with Public Sign Key to verify that the Bootloader Certificate and image were
correctly signed.

commander util verifysign bootloader-uart-xmodem.s37 --verify sign_pubkey.pem

Parsing file bootloader-uart-xmodem.s37...
Found application properties at 0x00002d78
Found certificate at 0x00002cf0
Successfully verified certificate signature with verification key.
Using certificate key to verify application signature.
Successfully verified application signature.
DONE

6. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in a signed
GBL image.

commander util appinfo bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x00002d00
Signature location : 0x00002e14
Signature type : ECDSA-P256
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : Bootloader (APPLICATION_TYPE_BOOTLOADER)
App version : 0x02000000
Product ID : Not set (0x00000000000000000000000000000000)

Found certificate at 0x00002c78
Application certificate info:
Certificate located at : 0x00002c78
Certificate version : 0x00000001
Certificate key : 0xb1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0a4e1dca4
 7c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63
Certificate signature : 0xef3b53368d4cd7821eb30a96140bbde8840378cfea30687a8c10642e1c7728fd
 309f976adf46e4eac62a2233f0c1f08f4e58344bdec61775b5282ceb351bb3d0
DONE

7. The signed bootloader image file (.s37) can be used for production programming or for generating a GBL upgrade image file for
bootloader upgrade.

8. Run the flash command to program the signed bootloader image (bootloader-uart-xmodem.s37) to the device if the device
does not have a bootloader.

commander flash bootloader-uart-xmodem.s37 --device EFR32MG21A010F1024 --serialno 440048205

Parsing file bootloader-uart-xmodem.s37...
Writing 16384 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x00003FFF (16 KiB)
Programming range 0x00000000 - 0x00001FFF (8 KiB)
Programming range 0x00002000 - 0x00003FFF (8 KiB)
DONE

Application Image File (Standard Certificate-Based)
1. Follow the procedures in 3.4.2 Generate an Unsigned Application Image to generate an unsigned application image for the boot-

loader.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 47

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

2. (Using Simplicity Commander) Run the convert command with Private Bootloader Key to overwrite the unsigned application
image file with the signed application image file (blink_baremetal.s37).

commander convert blink_baremetal.s37 --secureboot --keyfile bl_cert_key.pem --verify bl_cert_pubkey.pem
--outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x000064d8
Setting signature type in Application Properties: 0x00000001
Image SHA256: 8b58ec567126aa1f6baa88afc916581477745aca6f47697ec093512fc30dcc6f
R = 994739A26AB520A88A5550F1643AE263D88A952F185F96EE7021FA43DEA6138C
S = 65B7112715E2F999A6B216C32D3331AB63B2D31A0A1311DF36EEE62269F8D6AA

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

3. (Using an HSM and Simplicity Commander) Run the convert command with --extsign option to generate an external signing
application image file (blink_baremetal.extsign).

commander convert blink_baremetal.s37 --secureboot --extsign --outfile blink_baremetal

Parsing file blink_baremetal.s37...
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x000064d8
Setting signature type in Application Properties: 0x00000001
Writing to blink_baremetal.extsign...
DONE

Use an HSM containing the Private Bootloader Key to generate the signature for the external signing application image. This ex-
ample uses the OpenSSL with the Private Bootloader Key to simulate this process. The signature is in the app_signature.der.

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out app_signature.der blink_baremetal.extsign

Run the convert command with the application image signature to overwrite the unsigned application image file with the signed
application image file. (blink_baremetal.s37).

commander convert blink_baremetal.s37 --secureboot --signature app_signature.der
--verify bl_cert_pubkey.pem --outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Parsing signature file app_signature.der...
R = 8DA79B020E954D24C23423D80627E046E44052736F6546902F016D64464E82DE
S = 9D5A1CC424E97A5AD0352A4EEA6BBF565FED5FC61FF99E63AA73DFFEAD9EE399
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x000064d8
Setting signature type in Application Properties: 0x00000001

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 48

4. (Optional) Run the util verifysign command with Public Bootloader Key to verify that the application image file was correctly
signed.

commander util verifysign blink_baremetal.s37 --verify bl_cert_pubkey.pem

Parsing file blink_baremetal.s37...
Found application properties at 0x000061bc
Did not find application certificate in file
If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has previously seen
certificate based signing, it will not accept direct signing.
Successfully verified application signature.
DONE

5. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in a signed
application image.

commander util appinfo blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x000061bc
Signature location : 0x000064d8
Signature type : ECDSA-P256
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : MCU application (APPLICATION_TYPE_MCU)
App version : 0x00000001
Product ID : Not set (0x00000000000000000000000000000000)

No certificate found in image.
For Series 2 devices: If the configuration flag SECURE_BOOT_VERIFY_CERTIFICATE is set or a device has
previously seen certificate based signing, it will not accept direct signing.
DONE

6. The signed application image file (.s37) can be used for production programming or for generating a GBL upgrade image file for
application upgrade.

Application Image File (Advanced Certificate-Based)
1. Follow the procedures in 3.4.2 Generate an Unsigned Application Image to generate an unsigned application image for the boot-

loader.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 49

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

2. (Using Simplicity Commander) Run the util gencert command with Public Application Key and Private Bootloader Key to
generate the application certificate (app_cert.bin). Refer to Table 3.3 Certificates and Key Pairs for Certificate-Based Secure
Boot Examples on page 44 for details about the --cert-version for application certificate.

commander util gencert --cert-type secureboot --cert-version 1 --cert-pubkey app_cert_pubkey.pem
--sign bl_cert_key.pem --outfile app_cert.bin

Successfully signed certificate
DONE

Run the convert command with Application Certificate and Private Application Key to overwrite the unsigned application im-
age file with the signed application image file. (blink_baremetal.s37). This command will inject the application certificate into the
application image before signing.

commander convert blink_baremetal.s37 --secureboot --certificate app_cert.bin --keyfile app_cert_key.pem
--outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Writing certificate to location 0x000064d8
Private key matches public key in certificate.
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x00006560
Setting signature type in Application Properties: 0x00000001
Image SHA256: 38fd11214c36abf3bb4c4eeda8cfdd2ca2ac2ff1e07072d555a06c74700a23f5
R = 6B4E3BB454513CAA4569415AE8F79453973AAC7FD1FC4914284B65010F3790A6
S = 1657CAAABED579880187261038358C83B1780A67CC41475370D94ED4445A5557

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 50

3. (Using an HSM and Simplicity Commander) Run the util gencert command with Public Application Key and --extsign op-
tion to generate an external signing application certificate (app_cert.extsign). Refer to Table 3.3 Certificates and Key Pairs for
Certificate-Based Secure Boot Examples on page 44 for details about the --cert-version for application certificate.

commander util gencert --cert-type secureboot --cert-version 1 --cert-pubkey app_cert_pubkey.pem
--extsign --outfile app_cert

DONE

Use an HSM containing the Private Bootloader Key to generate the signature for the external signing application certificate. This
example uses the OpenSSL with the Private Bootloader Key to simulate this process. The signature is in the app_cert_signatu
re.der.

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out app_cert_signature.der app_cert.extsign

Run the util signcert command with the application certificate signature to generate the application certificate (app_cert.bi
n).

commander util signcert app_cert.extsign --cert-type secureboot --signature app_cert_signature.der
--verify bl_cert_pubkey.pem --outfile app_cert.bin

R = 279D4FA1B801D108F82E30B0CF1164BF597549287290BD3883C5847B91095CCE
S = 567F0E219D2089EF4D79C3D94E43D2FADFE1899B71492ED358E6A1B46AE8162F
Successfully verified signature
Successfully signed certificate
DONE

Run the convert command with the Application Certificate and --extsign option to generate an external signing application im-
age file (blink_baremetal.extsign).

commander convert blink_baremetal.s37 --secureboot --certificate app_cert.bin --extsign --outfile blink_baremetal

Parsing file blink_baremetal.s37...
Writing certificate to location 0x000064d8
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x00006560
Setting signature type in Application Properties: 0x00000001
Writing to blink_baremetal.extsign...
DONE

Use an HSM containing the Private Application Key to generate the signature for the external signing application image. This ex-
ample uses the OpenSSL with the Private Application Key to simulate this process. The signature is in the app_signature.der.

openssl dgst -sha256 -binary -sign app_cert_key.pem -out app_signature.der blink_baremetal.extsign

Run the convert command with the Application Certificate and application image signature to overwrite the unsigned applica-
tion image file with the signed application image file. (blink_baremetal.s37). This command will inject the application certificate
into the application image before signing.

commander convert blink_baremetal.s37 --secureboot --certificate app_cert.bin --signature app_signature.der
--verify app_cert_pubkey.pem --outfile blink_baremetal.s37

Parsing file blink_baremetal.s37...
Writing certificate to location 0x000064d8
Parsing signature file app_signature.der...
R = ADC2BAB959EC76CB2806C4649277669CF6E62A92ABFBBF20E551971449A8FCE0
S = B6B80130F95F62671372D1B2E471C82ADB08946C1F8938EED11F9822CE763A54
Found Application Properties at 0x000061bc
Writing Application Properties signature pointer to point to 0x00006560
Setting signature type in Application Properties: 0x00000001

Verifying signed image...

Verifying signed image...
Writing to blink_baremetal.s37...
Overwriting file: blink_baremetal.s37...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 51

4. (Optional) Run the util verifysign command with Public Bootloader Key to verify that the Application Certificate and im-
age were correctly signed.

commander util verifysign blink_baremetal.s37 --verify bl_cert_pubkey.pem

Parsing file blink_baremetal.s37...
Found application properties at 0x000061bc
Found certificate at 0x000064d8
Successfully verified certificate signature with verification key.
Using certificate key to verify application signature.
Successfully verified application signature.
DONE

5. (Optional) Run the util appinfo command to check all available information about ApplicationProperties_t struct in a signed
application image.

commander util appinfo blink_baremetal.s37

Parsing file blink_baremetal.s37...
Found application properties in image.
Application properties info:
Application properties location : 0x000061bc
Signature location : 0x00006560
Signature type : ECDSA-P256
Long token section address : Not set (0x00000000)

Application data info:
For Series 2 devices: If rollback prevention is enabled in the OTP configuration, the device will not boot
if the device has seen an application with a higher version number.
App type : MCU application (APPLICATION_TYPE_MCU)
App version : 0x00000001
Product ID : Not set (0x00000000000000000000000000000000)

Found certificate at 0x000064d8
Application certificate info:
Certificate located at : 0x000064d8
Certificate version : 0x00000001
Certificate key : 0xe562003cd86e225decfd35712e431a19ecd5031a079b06c1d473620a6be9f57a
 879820100fee074f28b5885fd6759f480b62aaa0717f96e245aab6635cfb1e11
Certificate signature : 0x039aaba62b5258e68d16e167c3a611c719c542bb3483f5d4b522472b06adf30f
 8cfcc484bf8551a208256e3d2d8c9194a7d2ac551e2cac659a99822308a40aa6
DONE

6. The signed application image file (.s37) can be used for production programming or for generating a GBL upgrade image file for
application upgrade.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 52

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

3.4.5 Generate a GBL Upgrade Image File

This section describes how to generate the GBL upgrade image files for updating the bootloader, Secure Engine, and application firm-
ware.

Note:
1. Following the procedures in 3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component to avoid overwriting the existing

application image (if necessary) when upgrading the bootloader or SE.
2. For a standalone bootloader with communication interface, the user can only generate three separate GBL upgrade image files

containing bootloader, SE, and application images.
3. For an application bootloader with storage, the user can generate a single GBL upgrade image file (see example below) with a

combination of bootloader, SE, and application images.

commander gbl create all.gbl --app app.s37 --bootloader bl.s37 --seupgrade se.seu

4. A signed GBL upgrade image file is required if the user enables the Require signed firmware upgrade files option in
3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component. The following table shows which private key(s) can be used to
sign the GBL upgrade image file (bootloader, SE, or application) on HSE and VSE devices. The VSE devices store a Public Sign
Key copy on the top page of the main flash to verify the GBL upgrade image file for ECDSA-P256-SHA256 Secure Boot.

Secure Boot HSE VSE

ECDSA-P256-SHA256 Private Sign Key Private Sign Key (Public Sign Key in main flash)

Certificate-Based Private Sign Key or Private Bootloader Key Private Bootloader Key

5. An encrypted GBL upgrade image file is required if the user enables the Require encrypted firmware upgrade files option in
3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component. Refer to 3.3 Provision GBL Decryption Key on how to provi-
sion the GBL Decryption Key for this option.

6. For an application bootloader with storage, the user can enable the Upgrade SE without using the staging area option in GSDK
v4.1.1 or higher to directly fetch the SE image from the GBL upgrade image file in storage instead of copying the image to the pre-
configured upgrade location.

To use the above option, the SE image cannot be in the encrypted part of the GBL upgrade image file if the Require encrypted
firmware upgrade files option is enabled. Use the --seunencrypted option in Simplicity Commander v1.13.0 or higher (see
example below) to generate an encrypted GBL upgrade image file with a SE image outside the encrypted part of the file.

commander gbl create se-upgrade.gbl --seupgrade secure-element.seu --seunencrypted --app myapp.s37
--encrypt aes_key.txt

The following sections provide two methods to sign the bootloader, Secure Engine, and application upgrade image files if the Require
signed firmware upgrade files option is enabled.

1. Using Simplicity Commander
2. Using an HSM and Simplicity Commander

The sections also include encryption examples with an AES-128 key (like aes_key.txt) for the Require encrypted firmware upgrade
files option. All procedures assume the required files are in the same folder.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 53

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Bootloader Upgrade
1. (Unsigned) Run the gbl create command with --bootloader option to generate the bootloader GBL upgrade image file (bootloa
der-uart-xmodem.gbl) with the signed bootloader image file (bootloader-uart-xmodem.s37) from 3.4.3 Signing for ECDSA-
P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Secure Boot.

Without encryption:

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37

Initializing GBL file...
Adding bootloader to GBL...
Writing GBL file bootloader-uart-xmodem.gbl...
DONE

With encryption:

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37
--encrypt aes_key.txt

Initializing GBL file...
Adding bootloader to GBL...
Encrypting GBL...
Writing GBL file bootloader-uart-xmodem.gbl...
DONE

2. (Signed - Using Simplicity Commander) Run the gbl create command with --bootloader option to generate the signed boot-
loader GBL upgrade image file (bootloader-uart-xmodem.gbl) with Private Sign Key or Private Bootloader Key and the sign-
ed bootloader image file (bootloader-uart-xmodem.s37) from 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or
3.4.4 Signing for Certificate-Based Secure Boot.

Without encryption:

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37 --sign sign_key.pem

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37
--sign bl_cert_key.pem

Initializing GBL file...
Adding bootloader to GBL...
Signing GBL...
Image SHA256: 3eb09993ffca5f9b34df3f38b65ab9d2f6619b828b014a186516016d4bbd80f7
R = C21E0C19254AC4F62374BBCA65DEBB42C7349384F5527330CD030A51DC2170F7
S = E1680C3670DE68D731086845E2726EF3BF07B96EB54AA2DB2F390F60BDB6DAB2
Writing GBL file bootloader-uart-xmodem.gbl...
DONE

With encryption:

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37 --sign sign_key.pem
--encrypt aes_key.txt

commander gbl create bootloader-uart-xmodem.gbl --bootloader bootloader-uart-xmodem.s37
--sign bl_cert_key.pem --encrypt aes_key.txt

Initializing GBL file...
Adding bootloader to GBL...
Encrypting GBL...
Signing GBL...
Image SHA256: a2ef5e19e6b2ec327010af9fcb7de861c6a311987b7d2c39ef6439ca8b9999c4
R = B74972171109A05A9B1B45E1C8A2BCD57EAB1EA8F8A7936BBDB14CF6FA36B28C
S = 9B673083684B01C2D05BD702A4D29A6EDCF88C471C3FA8B71DDE00AE85861930
Writing GBL file bootloader-uart-xmodem.gbl...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 54

3. (Signed - Using an HSM and Simplicity Commander) Run the gbl create command with --bootloader and --extsign options
to generate an external signing bootloader GBL upgrade image file (bootloader-uart-xmodem.extsign) with the signed boot-
loader image file (bootloader-uart-xmodem.s37) from 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for
Certificate-Based Secure Boot.

Without encryption:

commander gbl create bootloader-uart-xmodem --bootloader bootloader-uart-xmodem.s37 --extsign

Initializing GBL file...
Adding bootloader to GBL...
Preparing GBL for external signing...
Writing GBL file bootloader-uart-xmodem.extsign...
DONE

With encryption:

commander gbl create bootloader-uart-xmodem --bootloader bootloader-uart-xmodem.s37 --extsign
--encrypt aes_key.txt

Initializing GBL file...
Adding bootloader to GBL...
Encrypting GBL...
Preparing GBL for external signing...
Writing GBL file bootloader-uart-xmodem.extsign...
DONE

Use an HSM containing the Private Sign Key or Private Bootloader Key to generate the signature for the external signing bootload-
er GBL upgrade image file. This example uses the OpenSSL with the Private Sign Key or Private Bootloader Key to simulate
this process. The signature is in the gbl_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out gbl_signature.der bootloader-uart-xmodem.extsign

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out gbl_signature.der bootloader-uart-xmodem.extsign

Run the gbl sign command with the signature above to generate a signed bootloader GBL upgrade image file (bootloader-uar
t-xmodem.gbl).

commander gbl sign bootloader-uart-xmodem.extsign --signature gbl_signature.der --verify sign_pubkey.pem
--outfile bootloader-uart-xmodem.gbl

commander gbl sign bootloader-uart-xmodem.extsign --signature gbl_signature.der
--verify bl_cert_pubkey.pem --outfile bootloader-uart-xmodem.gbl

Reading GBL data from bootloader-uart-xmodem.extsign...
Parsing signature file gbl_signature.der...
R = 90F0A3C0D5D9ED2DC10EB3F55595FF21AB31307DC6283E3F3B7494A30FB741D4
S = 2765041F515A960F048CA250BFAB92031D4D1E569FB3F917C9329E7362C17B51
Writing signature to GBL...
Verifying GBL...
Successfully verified GBL signature
Writing GBL file bootloader-uart-xmodem.gbl...
DONE

4. Follow the procedures in 3.4.6 Upload a GBL Upgrade Image File to upgrade the bootloader with the bootloader GBL upgrade
image file.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 55

Secure Engine Upgrade
1. (Unsigned) Run the gbl create command with --seupgrade option to generate the SE GBL upgrade image file (s2c1_se_fw_upg
rade_1v2p9.gbl) with the SE image file (s2c1_se_fw_upgrade_1v2p9.seu).

Without encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Writing GBL file s2c1_se_fw_upgrade_1v2p9.gbl...
DONE

With encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu
--encrypt aes_key.txt

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Encrypting GBL...
Writing GBL file s2c1_se_fw_upgrade_1v2p9.gbl...
DONE

2. (Signed - Using Simplicity Commander) Run the gbl create command with --seupgrade option to generate the signed SE
GBL upgrade image file (s2c1_se_fw_upgrade_1v2p9.gbl) with Private Sign Key or Private Bootloader Key and the SE image
file (s2c1_se_fw_upgrade_1v2p9.seu).

Without encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu
--sign sign_key.pem

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu
--sign bl_cert_key.pem

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Signing GBL...
Image SHA256: 599d7fc35996b4715441b642709ed262525d09d811d4726e423c0d605ec0f0bf
R = EF8EC2DDEDDF44DF88FEAD4ED0A9FDC6351B4D745D5A05BFB87204791871A525
S = FCB26EF005D97E8C5341153A210AE9927E1CF646A3E473FFB90DA8C857E6421F
Writing GBL file s2c1_se_fw_upgrade_1v2p9.gbl...
DONE

With encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu
--sign sign_key.pem --encrypt aes_key.txt

commander gbl create s2c1_se_fw_upgrade_1v2p9.gbl --seupgrade s2c1_se_fw_upgrade_1v2p9.seu
--sign bl_cert_key.pem --encrypt aes_key.txt

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Encrypting GBL...
Signing GBL...
Image SHA256: a5ab368c99c49503a7dfb6aef1724dc3f883eabddcac7b089148035483e24322
R = 289F05910A8E0735648260FA7A1C67731CA86FB2DFCB9B405EC8D297892915A7
S = F21D18351442D0E5F49CFBEDA2C0EFA8B7F0911B4B6216EB48250CB5889ECAFD
Writing GBL file s2c1_se_fw_upgrade_1v2p9.gbl...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 56

3. (Signed - Using an HSM and Simplicity Commander) Run the gbl create command with --seupgrade and --extsign options to
generate an external signing SE GBL upgrade image file (s2c1_se_fw_upgrade_1v2p9.extsign) with the SE image file (s2c1_se
_fw_upgrade_1v2p9.seu).

Without encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9 --seupgrade s2c1_se_fw_upgrade_1v2p9.seu --extsign

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Preparing GBL for external signing...
Writing GBL file s2c1_se_fw_upgrade_1v2p9.extsign...
DONE

With encryption:

commander gbl create s2c1_se_fw_upgrade_1v2p9 --seupgrade s2c1_se_fw_upgrade_1v2p9.seu --extsign --encrypt
aes_key.txt

Initializing GBL file...
Adding Secure Element upgrade image to GBL...
Encrypting GBL...
Preparing GBL for external signing...
Writing GBL file s2c1_se_fw_upgrade_1v2p9.extsign...
DONE

Use an HSM containing the Private Sign Key or Private Bootloader Key to generate the signature for the external signing SE GBL
upgrade image file. This example uses the OpenSSL with the Private Sign Key or Private Bootloader Key to simulate this proc-
ess. The signature is in the gbl_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out gbl_signature.der s2c1_se_fw_upgrade_1v2p9.extsign

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out gbl_signature.der s2c1_se_fw_upgrade_1v2p9.extsign

Run the gbl sign command with the signature above to generate a signed SE GBL upgrade image file (s2c1_se_fw_upgrade_1
v2p9.gbl).

commander gbl sign s2c1_se_fw_upgrade_1v2p9.extsign --signature gbl_signature.der --verify sign_pubkey.pem
--outfile s2c1_se_fw_upgrade_1v2p9.gbl

commander gbl sign s2c1_se_fw_upgrade_1v2p9.extsign --signature gbl_signature.der
--verify bl_cert_pubkey.pem --outfile s2c1_se_fw_upgrade_1v2p9.gbl

Reading GBL data from s2c1_se_fw_upgrade_1v2p9.extsign...
Parsing signature file gbl_signature.der...
R = 2798B98194EE02717C738B5866ABD8D234D0F0E096E90495D371D2507D8E1C67
S = 19F2586E2C6177D6B4EEC708E006F67334C989D0398D4233C686C98ECB6992FB
Writing signature to GBL...
Verifying GBL...
Successfully verified GBL signature
Writing GBL file s2c1_se_fw_upgrade_1v2p9.gbl...
DONE

4. Follow the procedures in 3.4.6 Upload a GBL Upgrade Image File to upgrade the SE with the SE GBL upgrade image file.

Note: Trying to apply a lower version of the SE image file (.seu) to the device will be ignored.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 57

Application Upgrade
1. (Unsigned) Run the gbl create command with --app option to generate the application GBL upgrade image file (blink_baremet
al.gbl) with the signed application image file (blink_baremetal.s37) from 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot
or 3.4.4 Signing for Certificate-Based Secure Boot.

Without encryption:

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Writing GBL file blink_baremetal.gbl...
DONE

With encryption:

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37 --encrypt aes_key.txt

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Encrypting GBL...
Writing GBL file blink_baremetal.gbl...
DONE

2. (Signed - Using Simplicity Commander) Run the gbl create command with --app option to generate the signed application
GBL upgrade image file (blink_baremetal.gbl) with Private Sign Key or Private Bootloader Key and the signed application
image file (blink_baremetal.s37) from 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-
Based Secure Boot.

Without encryption:

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37 --sign sign_key.pem

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37 --sign bl_cert_key.pem

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Signing GBL...
Image SHA256: 116c1be47d799ab75afc7b3f4c9a8023e5cd031103b1d28c578eebfaf1ad73d2
R = CE4D85C058301A2437440E00385D97E496F1D8B5CAFFB8C184F8A88B5266E3E9
S = 90BBF754EBC0AB343CC32AA06ADED85F9D12D1A67CA6608F9085137142000A40
Writing GBL file blink_baremetal.gbl...
DONE

With encryption:

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37 --sign sign_key.pem
--encrypt aes_key.txt

commander gbl create blink_baremetal.gbl --app blink_baremetal.s37 --sign bl_cert_key.pem
--encrypt aes_key.txt

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Encrypting GBL...
Signing GBL...
Image SHA256: 24092ed828e6fffc41e7ed40c046b80789ef2337da0d7373a15e59d27e07e0fc
R = 6143F307119402DC55C63220D54542B84EBEFB324963C63796A37B9845482B35
S = AE3644D59DF3A27F45B335CB4F79D2347364958E0F152AF745FB7042537D1B6A
Writing GBL file blink_baremetal.gbl...
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 58

3. (Signed - Using an HSM and Simplicity Commander) Run the gbl create command with --app and --extsign options to gener-
ate an external signing application GBL upgrade image file (blink_baremetal.extsign) with the signed application image file (bl
ink_baremetal.s37) from 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Secure
Boot.

Without encryption:

commander gbl create blink_baremetal --app blink_baremetal.s37 --extsign

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Preparing GBL for external signing...
Writing GBL file blink_baremetal.extsign...
DONE

With encryption:

commander gbl create blink_baremetal --app blink_baremetal.s37 --extsign --encrypt aes_key.txt

Parsing file blink_baremetal.s37...
Initializing GBL file...
Adding application to GBL...
Encrypting GBL...
Preparing GBL for external signing...
Writing GBL file blink_baremetal.extsign...
DONE

Use an HSM containing the Private Sign Key or Private Bootloader Key to generate the signature for the external signing applica-
tion GBL upgrade image file. This example uses the OpenSSL with the Private Sign Key or Private Bootloader Key to simulate
this process. The signature is in the gbl_signature.der.

openssl dgst -sha256 -binary -sign sign_key.pem -out gbl_signature.der blink_baremetal.extsign

openssl dgst -sha256 -binary -sign bl_cert_key.pem -out gbl_signature.der blink_baremetal.extsign

Run the gbl sign command with the signature above to generate signed a application GBL upgrade image file (blink_baremeta
l.gbl).

commander gbl sign blink_baremetal.extsign --signature gbl_signature.der --verify sign_pubkey.pem
--outfile blink_baremetal.gbl

commander gbl sign blink_baremetal.extsign --signature gbl_signature.der --verify bl_cert_pubkey.pem
--outfile blink_baremetal.gbl

Reading GBL data from blink_baremetal.extsign...
Parsing signature file gbl_signature.der...
R = 533499660E24F1620EF25D862FB607F46E9E4ECC41CBDECBE77C64EF1970D96A
S = FA8901878218F5F1DB0FAF8B074CE98A27C63FFDE63730CD49EE47E847B9811D
Writing signature to GBL...
Verifying GBL...
Successfully verified GBL signature
Writing GBL file blink_baremetal.gbl...
DONE

4. Follow the procedures in 3.4.6 Upload a GBL Upgrade Image File to upgrade the application with the application GBL upgrade
image file.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 59

Note:
• The Simplicity Commander v1.11.0 or above supports GBL upgrade image file in util verifysign command.

commander util verifysign blink_baremetal.gbl --verify sign_pubkey.pem

Successfully verified GBL signature
DONE

• The Simplicity Commander v1.12.0 or above fixes a bug introduced in v1.11.0 when using the --extsign option on the GBL up-
grade image file.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 60

3.4.6 Upload a GBL Upgrade Image File

This section describes how to use UART XMODEM Bootloader v2.0.0 in GSDK v4.0 to upload a GBL upgrade image file (.gbl) to the
device. The procedures and pictures may be different for the other versions of this example.

The GBL upgrade image file uses a proprietary format to store the upgrade image for a firmware upgrade. Use the gbl create com-
mand to generate the GBL upgrade image file for bootloader, application, and Secure Engine. Refer to UG266/UG489 and 3.4.5 Gener-
ate a GBL Upgrade Image File for more information about GBL upgrade image file creation.

The user can use any terminal software that supports the XMODEM-CRC protocol for file transfer. This application note uses Tera
Term as terminal software. The default serial port setting is 115200 bps 8-N-1.

1. Assume the UART XMODEM Bootloader and application firmware had already flashed to the radio board on WSTK.
2. Press the RESET and PB0 push buttons on the WSTK.
3. Release the RESET push button to run the UART XMODEM Bootloader.

4. Release the PB0 push button. Press 1 (upload gbl) in Tera Term to upload a GBL upgrade image file.

5. Transfer a file through XMODEM-CRC in Tera Term, navigate to File → Transfer → XMODEM → Send....

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 61

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en

6. Select the target GBL upgrade image file. Click [Open] to upload.

7. If no error occurs, press 2 (run) to start a firmware upgrade.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 62

3.5 Upgrade to Certificate-Based Secure Boot

The user can upgrade the Series 2 devices deployed in the field from ECDSA-P256-SHA256 Secure Boot to certificate-based Secure
Boot even the SECURE_BOOT_VERIFY_CERTIFICATE option in SE OTP is disabled.

commander security readconfig --serialno 440048205

MCU Flags
Secure Boot : Enabled
Secure Boot Verify Certificate : Disabled
Secure Boot Anti Rollback : Enabled
Secure Boot Page Lock Narrow : Disabled
Secure Boot Page Lock Full : Disabled

The following procedures for the upgrade to certificate-based Secure Boot is an IRREVERSIBLE process.
1. Follow the procedures in 3.1.4 Generate Key and Signing to generate an ECDSA-P256 bootloader certificate key pair.
2. Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed GBL image file with the bootloader

certificate key pair in step 1. The bootloader certificate version (--cert-version in the util gencert command) in this signed
GBL image file must be equal to or higher than one (≥ 1).

3. Follow the procedures in 3.4.5 Generate a GBL Upgrade Image File to upgrade the bootloader to certificate-based Secure Boot.
Use the Private Sign Key for ECDSA-P256-SHA256 Secure Boot to sign the bootloader GBL upgrade image file if required.

SE will use the Public Bootloader Key to validate the bootloader image once SE identifies a bootloader certificate in the bootloader
image. If the bootloader certificate version from step 2 is higher than zero (> 0) and gets verified once, SE will never again ac-
cept the ECDSA-P256-SHA256 Secure Boot signed bootloader image. Refer to the "Secure Boot Procedure" section in UG266/
UG489 for more information.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.9
Serial number : 000000000000000014b457fffe045a2d
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : Not OK
Secure boot : Enabled
Boot status : 0x18 - Failed: Secure Boot requires cert, but none found
DONE

4. (Standard Certificate-Based) Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed
application image file with the Private Bootloader Key in step 1.

5. (Advanced Certificate-Based) Follow the procedures in 3.1.4 Generate Key and Signing to generate an ECDSA-P256 application
certificate key pair.

Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed application image file with the
application certificate key pair in this step and the Private Bootloader Key in step 1. The application certificate version (--cert-
version in the util gencert command) in this signed application image file must be equal to or higher than the bootloader cer-
tificate version in step 2 (Table 3.3 Certificates and Key Pairs for Certificate-Based Secure Boot Examples on page 44).

6. Follow the procedures in 3.4.5 Generate a GBL Upgrade Image File to upgrade application with the signed image from step 4 or 5
for certificate-based Secure Boot. Use the Private Sign Key or Private Bootloader key in step 1 for certificate-based Secure Boot to
sign the application GBL upgrade image file if required.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 63

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

3.6 Certificate Revocation

The certificate revocation is the act of invalidating a certificate when its private key shows signs of being compromised. The following
procedures describe how to revoke the Series 2 devices' bootloader certificates deployed in the field.

1. Follow the procedures in 3.1.4 Generate Key and Signing to generate a new ECDSA-P256 bootloader certificate key pair.
2. Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed GBL image file with the bootloader

certificate key pair in step 1. The bootloader certificate version (--cert-version in the util gencert command) in this signed
GBL image file must be higher than the certificate version in SE flash (Table 3.3 Certificates and Key Pairs for Certificate-Based
Secure Boot Examples on page 44).

3. Follow the procedures in 3.4.5 Generate a GBL Upgrade Image File to upgrade the bootloader with the signed image from step 2.
Use the Private Sign Key or existing Private Bootloader Key for certificate-based Secure Boot to sign the bootloader GBL upgrade
image file if required.

4. (Standard Certificate-Based) Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed
application image file with the Private Bootloader Key in step 1.

5. (Advanced Certificate-Based) Follow the procedures in 3.4.4 Signing for Certificate-Based Secure Boot to generate the signed
application image file with the Private Bootloader Key in step 1. The application certificate version (--cert-version in the util
gencert command) in this signed application image file must be equal to or higher than the bootloader certificate version in step
2 (Table 3.3 Certificates and Key Pairs for Certificate-Based Secure Boot Examples on page 44).

The user should generate a new ECDSA-P256 application certificate key pair if the Private Application Key for the application cer-
tificate is compromised.

6. Follow the procedures in 3.4.5 Generate a GBL Upgrade Image File to upgrade the application with the signed image from step 4
or 5. Use the Private Sign Key or Private Bootloader key in step 1 for certificate-based Secure Boot to sign the application GBL
upgrade image file if required.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 64

3.7 Upgrade to Secure Boot with RTSL

The following procedures describe upgrading Series 2 devices deployed in the field without Secure Boot to Secure Boot with RTSL.
1. (Recommend) Upgrade SE firmware to the latest version if available. See the "Gecko Bootloader Operation - Secure Engine Up-

grade" section in UG266/UG489.
2. Follow the procedures in 3.4.1.1 AppBuilder or 3.4.1.2 Bootloader-core Software Component to prepare an unsigned GBL image

with the required Secure Boot configuration for the application firmware.
3. Follow the procedures in 3.1.4 Generate Key and Signing to generate the ECDSA-P256 Sign Key pair for Secure Boot. The key

pairs for the bootloader certificate and application certificate (advanced) are required if using Certificate-Based Secure Boot.
4. Follow steps 1 to 2 in 3.3.2 SE Manager Key Provisioning Platform Example if this HSE GBL Decryption Key option is selected.

Use the Public Sign Key in step 3 and follow steps 1 to 3 in 3.2.2 SE Manager Key Provisioning Platform Example to generate an
unsigned image. Use this image to create an application GBL upgrade image file.

5. The original GBL (application Secure Boot is disabled) boots into the unsigned SE Manager Key Provisioning Platform Examp
le after upgrading the application with the image file in step 4.

6. Follow steps 5 to 8 in SE Manager Key Provisioning Platform Example to install the Public Sign Key to SE OTP and GBL Decryp-
tion Key (optional) to HSE OTP. Press SPACE instead of ENTER in step 9 to BYPASS the programming of the Secure Boot configu-
ration in SE OTP.

 . Press ENTER to initialize SE OTP for secure boot configuration or press SPACE to skip.

 . SE manager deinitialization... SL_STATUS_OK (cycles: 5 time: 0 us)

Note:
• Programming the Public Sign Key to the top page of the main flash (not included in this example) is required for the VSE device

ECDSA-P256-SHA256 Secure Boot.
• Programming the GBL Decryption Key to the top page of the main flash (not included in this example) is required if the default

storage option for GBL Decryption Key is selected and the Require encrypted firmware upgrade files option is enabled in
step 2.

7. Follow the signing procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Se-

cure Boot (Bootloader Image File section, skip the Secure Boot configuration for the bootloader) with the required key(s) generated
in step 3 to sign the unsigned GBL image generated from step 2. Use this signed image to create a bootloader GBL upgrade image
file.

8. Follow the signing procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Se-
cure Boot (Application Image File section) with the required key(s) generated in step 3 to sign the unsigned application image gen-
erated from step 4. Use this signed image to create an application GBL upgrade image file.

Note: For the application bootloader with storage, the user can generate a single GBL upgrade image file for signed images from
steps 7 and 8.

9. The Secure Boot in SE OTP is not yet enabled, so FSB does not verify the signature when upgrading to the signed GBL in step 7.
The updated GBL (application Secure Boot enabled) verifies the signature when upgrading or booting to the signed SE Manager K
ey Provisioning Platform Example in step 8.

10. Follow steps 9 to 10 (use SPACE to skip previous steps for OTP key programming) in SE Manager Key Provisioning Platform Exam-
ple to program the required Secure Boot configuration in SE OTP for signed GBL.

11. Update a signed custom application firmware to replace the signed SE Manager Key Provisioning Platform Example used for
Secure Boot with RTSL upgrade.

Note:
• Refer to the "Enabling Secure Boot RTSL on Series 2 Devices" section (either Standalone Bootloaders or Application Bootloaders

with Storage) in UG266/UG489 for details.
• The SE Manager Key Provisioning Platform Example used here is just for reference. The user can modify or write a new appli-

cation to automate the processes for the Secure Boot with RTSL upgrade.
• If the Require signed firmware upgrade files option is enabled in step 2, the GBL upgrade image files from steps 8 and 11 must be

signed.
• If the Require encrypted firmware upgrade files option is enabled in step 2, the GBL upgrade image files from steps 8 and 11 must

be encrypted. And the GBL Decryption Key for the corresponding option in GBL must be in place.

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 65

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

3.8 Recover Devices when Secure Boot Fails

If a Secure Boot process fails (meaning firmware image at device starting address validation fails), the only way to recover is to flash a
correctly signed image.

The following table describes the different debug lock scenarios on recovering the Secure Boot failure device.

Secure Debug Device Erase Debug Lock State Recover from Secure Boot Failure

Disabled Enabled Disabled Unlock Flash a correctly signed image.

Disabled Enabled Enabled Standard debug lock Flash a correctly signed image after standard debug
unlocking the device.

Disabled Disabled Enabled Permanent debug lock There is no way to recover the device. Make sure the
programmed image is correctly signed before locking
the device.

Enabled Disabled Enabled Secure debug lock Flash a correctly signed image after secure debug
unlocking the device.

Note: The error code in the Boot status of examples below depends on boot failure caused by the host image (GBL).

The following procedures describe how to recover the Secure Boot failure device from the lock states below.
• Unlocked
• Standard debug locked
• Secure debug locked

1. Follow the procedure in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Secure Boot to
generate a correctly signed GBL.

2. (Unlocked) Run the security status command to get the boot status.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.9
Serial number : 000000000000000014b457fffe045afd
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : Not OK
Secure boot : Enabled
Boot status : 0x12 - Failed: Error while checking signature of host firmware
DONE

Run the flash command to flash the correctly signed image (like bootloader-uart-xmodem.s37). If a failed Secure Boot is detec-
ted, the device will be erased before flashing the new image.

commander flash bootloader-uart-xmodem.s37 --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Failed secure boot detected. Issuing a mass erase before flashing to recover the device...
Parsing file bootloader-uart-xmodem.s37...
Writing 16384 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x00003FFF (16 KiB)
Programming range 0x00000000 - 0x00001FFF (8 KiB)
Programming range 0x00002000 - 0x00003FFF (8 KiB)
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 66

3. (Standard debug locked) Run the security status command to get the boot status.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.9
Serial number : 000000000000000014b457fffe045afd
Debug lock : Enabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : Not OK
Secure boot : Enabled
Boot status : 0x12 - Failed: Error while checking signature of host firmware
DONE

Run the security erasedevice command to unlock the device.

commander security erasedevice --device EFR32MG21A010F1024 --serialno 440048205

Successfully erased device
DONE

Note: Issue a power-on or pin reset to complete the unlock process.

Run the flash command to flash the correctly signed image (like bootloader-uart-xmodem.s37). If a failed Secure Boot is detec-
ted, the device will be erased before flashing the new image.

commander flash bootloader-uart-xmodem.s37 --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Failed secure boot detected. Issuing a mass erase before flashing to recover the device...
Parsing file bootloader-uart-xmodem.s37...
Writing 16384 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x00003FFF (16 KiB)
Programming range 0x00000000 - 0x00001FFF (8 KiB)
Programming range 0x00002000 - 0x00003FFF (8 KiB)
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 67

4. (Secure debug locked) Run the security status command to get the boot status.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.9
Serial number : 0000000000000000000d6ffffe0a3a5f
Debug lock : Enabled
Device erase : Disabled
Secure debug unlock : Enabled
Tamper status : Not OK
Secure boot : Enabled
Boot status : 0x12 - Failed: Error while checking signature of host firmware
DONE

Run the security unlock command to unlock the device with the debug unlock token.

commander security unlock --device EFR32MG21A010F1024 --serialno 440048205

Unlocking with unlock payload:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/
device_0000000000000000000d6ffffe0a3a5f/challenge_020fc3cc9e492088d06d75d71b7aabfe/
unlock_payload_0000000000111110.bin
Secure debug successfully unlocked
DONE

Run the flash command with the --noreset option to flash the correctly signed image (like bootloader-uart-xmodem.s37).

commander flash --noreset bootloader-uart-xmodem.s37 --device EFR32MG21A010F1024 --serialno 440048205

Parsing file bootloader-uart-xmodem.s37...
Writing 16384 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x00003FFF (16 KiB)
Erasing range 0x00000000 - 0x00003FFF (2 sectors, 16 KiB)
Programming range 0x00000000 - 0x00001FFF (8 KiB)
Programming range 0x00002000 - 0x00003FFF (8 KiB)
DONE

Note: The --noreset option prevents the device from returning to the secure debug lock state before flashing.

5. Run the security status command to check the boot status. The example below is an unlocked device.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.9
Serial number : 000000000000000014b457fffe045afd
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Enabled
Boot status : 0x20 - OK
DONE

AN1218: Series 2 Secure Boot with RTSL
Examples

silabs.com | Building a more connected world. Rev. 0.9 | 68

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

4. Debugging on Secure Boot Enabled Device

Assume a correctly signed GBL image has been programmed to the device. Follow the procedures in 3.4.2 Generate an Unsigned Ap-
plication Image to generate an unsigned application image for the GBL.

The Windows environment variable PATH should include the folder (C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_pa
cks\commander) that locates the commander.exe of Simplicity Commander.

The following sections describe how to debug an application firmware with Simplicity IDE, or IAR on a Secure Boot enabled device.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 69

4.1 Simplicity IDE

This application note uses Simplicity Studio v5.2.3.1. The procedures and pictures may be different for the other versions of Simplicity
Studio 5.

1. The Simplicity IDE creates a folder below (<NAME> is the Windows User Name on PC) in Windows when building the unsigned
application image.

C:\Users\<NAME>\SimplicityStudio\v5_workspace\blink_baremetal\GNU ARM v10.2.1 - Default

2. Follow the procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Secure Boot
to create a batch file (Windows) to sign the unsigned application image and then flash it to the device. This application note uses
ECDSA-P256-SHA256 Secure Boot (Using Simplicity Commander) as an example to create a secure_boot_debug.bat file below.

commander convert blink_baremetal.s37 --secureboot --keyfile sign_key.pem --verify sign_pubkey.pem
--outfile blink_baremetal.s37
commander flash blink_baremetal.s37

3. Copy the batch file in step 2 and files (sign_key.pem and sign_pubkey.pem in this example) specified in secure_boot_debug.bat
to the folder in step 1.

4. Right-click the project in the Project Explorer window, and then click Properties to open the properties dialog.

5. Select C/C++ Build→Settings→Build Steps. Enter the phrase below to the Command: box under the Post-build steps (enter
text to Description: box is optional) to run the batch file as a post-build action. Click [Apply and Close] to exit.

cmd //c 'secure_boot_debug.bat'

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 70

6. After building the project, the batch file in the Post-build steps overwrites the unsigned application image with the signed applica-
tion image.

Note: If the project is already up-to-date, it will not invoke the Post-build steps in step 5 to run the batch file. Use a dummy edit
(add space or newline) on one of the source files in the project to trigger the build action.

7. The application starts to run if no error in step 6.
8. Select the project in the Project Explorer window, click Run→Attach to→1 Silicon Labs ARM Program to attach to the running

target for debugging on the signed application image.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 71

4.2 IAR

This section uses Simplicity Studio v5.4.2.0 and IAR v9.20.4. The procedures and pictures may be different for the other versions of
Simplicity Studio 5 and IAR.

1. The Overview tab shows the Target and Tool Settings card on the left side. Scroll down if necessary and click [Change
Target/SDK/Generators].

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 72

2. Drop down the CHANGE PROJECT GENERATORS list and select IAR Embedded Workbench Project. Click [Save] to generate
an IAR project.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 73

3. Double click the IAR workspace file (blink_baremetal.eww) in the Project Explorer window to open the IAR project. The IAR
creates a folder below (<NAME> is the Windows User Name on PC) in Windows to store the compiled image.

C:\Users\<NAME>\SimplicityStudio\v5_workspace\blink_baremetal\ewarm-iar\exe

4. Follow the procedures in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot or 3.4.4 Signing for Certificate-Based Secure Boot
to create a batch file (Windows) to sign the unsigned application image. This application note uses ECDSA-P256-SHA256 Secure
Boot (Using Simplicity Commander) as an example to create a secure_boot_debug.bat file below.

cd C:\Users\<NAME>\SimplicityStudio\v5_workspace\blink_baremetal\ewarm-iar\exe
commander convert blink_baremetal.s37 --secureboot --keyfile sign_key.pem --verify sign_pubkey.pem
--outfile blink_baremetal.s37

5. Copy the batch file in step 4 and files (sign_key.pem and sign_pubkey.pem in this example) specified in secure_boot_debug.bat
to the folder in step 3.

6. Right-click the project in the workspace, and then click Options....

Note: For GSDK v3.2 and lower, the app_properties.c is manually added to the IAR project.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 74

7. Click Build Actions to open the Build Actions Configuration dialog box. Enter the phrase below to the Post-build command
line: box to run the batch file as a post-build action. Click [OK] to exit.

cmd /c "$PROJ_DIR$\ewarm-iar\exe\secure_boot_debug.bat > $PROJ_DIR$\log.txt 2>&1"

8. After building the project, the batch file in the Post-build command overwrites the unsigned application image with the signed ap-
plication image.

Note: If the project is already up-to-date, it will not invoke the Post-build command in step 7 to run the batch file. Use a dummy
edit (add space or newline) on one of the source files in the project to trigger the build action.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 75

9. The > $PROJ_DIR$\log.txt 2>&1 redirects the batch file output to the log.txt file in the IAR project folder.

10. If no error in step 8, click the icon to start debugging on the signed application image.

AN1218: Series 2 Secure Boot with RTSL
Debugging on Secure Boot Enabled Device

silabs.com | Building a more connected world. Rev. 0.9 | 76

5. Failure Analysis

The following table describes the different scenarios when returning a Series 2 device to Silicon Labs for failure analysis.

State Secure Boot Disabled Secure Boot Enabled (2)

Standard debug unlock Device erase is not necessary for failure analysis. Device erase is not necessary, but a correctly sign-
ed image is required to perform failure analysis.

Standard debug lock Device erase is required to perform failure analysis. Require device erase and correctly signed image to
perform failure analysis.

Permanent debug lock Cannot perform failure analysis. Cannot perform failure analysis.

Secure debug lock (1) Require debug unlock token to perform failure analy-
sis.

Require debug unlock token and correctly signed
image to perform failure analysis.

Note:
1. Follow the procedures in AN1190 section "Secure Debug Unlock and Roll Challenge - Simplicity Commander" to generate a valid

debug unlock token for each device returned to Silicon Labs for failure analysis.
2. Secure boot enabled devices, especially with secure boot failure, may limit Silicon Labs' ability to determine the root cause of fail-

ure.

AN1218: Series 2 Secure Boot with RTSL
Failure Analysis

silabs.com | Building a more connected world. Rev. 0.9 | 77

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

6. Revision History

Revision 0.9

February 2023

• Removed SE firmware recommendation (moved to 1.3 SE Firmware) in 2.1 Introduction.
• Added Provision GBL Decryption Key examples to 3.1 Overview.
• Updated steps 5 and 8 in 3.2.2 SE Manager Key Provisioning Platform Example.
• Added 3.3 Provision GBL Decryption Key.
• Updated 3.4.1 Generate an Unsigned GBL Image.
• Added step 9 and note (after step 10) to 3.4.1.2 Bootloader-core Software Component.
• Added note (after step 9) to 3.4.2 Generate an Unsigned Application Image.
• Added a table to 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot.
• Updated 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot, 3.4.4 Signing for Certificate-Based Secure Boot, and 3.4.5 Generate

a GBL Upgrade Image File to clarify two methods are used for signing.
• Updated 3.4.5 Generate a GBL Upgrade Image File for Upgrade SE without using the staging area and Require encrypted firmware

upgrade files options.
• Added a note to the Secure Engine Upgrade section in 3.4.5 Generate a GBL Upgrade Image File.
• Updated 3.7 Upgrade to Secure Boot with RTSL for Require signed firmware upgrade files option.
• Updated 3.8 Recover Devices when Secure Boot Fails to describe the states for Secure Boot recovery.

Revision 0.8

August 2022

• Updated figure in 3.4.1 Generate an Unsigned GBL Image for GSDK v4.1.
• Updated IAR file generation to match Simplicity Studio 5.4.2.0 interface.

Revision 0.7

June 2022

• Updated table and note in 1. Series 2 Device Security Features.
• Replaced Device Compatibility with SE Firmware in 1. Series 2 Device Security Features.
• Added 5. Failure Analysis.

Revision 0.6

March 2022

• Added digit 4 to Note 3 in 1. Series 2 Device Security Features.
• Updated Device Compatibility and moved it under 1. Series 2 Device Security Features.

AN1218: Series 2 Secure Boot with RTSL
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 78

Revision 0.5

January 2022
• Corrected the Windows folder for GSDK v4.0 and higher in 2.1 Introduction.
• Updated the web link for GSDK in 2.1 Introduction.
• Added note to the table in 3.2 Provision Public Sign Key and Secure Boot Enabling.
• Added note to the table in 3.2.1 Simplicity Commander step 5.
• Added step 9 to 3.4.1.1 AppBuilder.
• Added step 9 to 3.4.1.2 Bootloader-core Software Component.
• Corrected the Windows folder for GSDK v4.0 and higher in 3.4.2 Generate an Unsigned Application Image steps 4 and 7.
• Updated note in 3.4.2 Generate an Unsigned Application Image step 5.
• Inserted steps 5 and 6 to Bootloader Image File section in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot.
• Added step 5 to Application Image File section in 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot.
• Corrected the Windows folder for GSDK v4.0 and higher in Table 3.2 Certificate Structure on page 44.
• Inserted steps 6 and 7 to Bootloader Image File section in 3.4.4 Signing for Certificate-Based Secure Boot.
• Added step 6 to Application Image File (Standard Certificate-Based) section in 3.4.4 Signing for Certificate-Based Secure Boot.
• Added step 6 to Application Image File (Advanced Certificate-Based) section in 3.4.4 Signing for Certificate-Based Secure Boot.

Revision 0.4

December 2021
• Formatting updates for source compatibility.
• Added 1. Series 2 Device Security Features and use the terminology defined in this section throughout the document.
• Added Device Compatibility section.
• Removed terminology and Table 2.1 in 2.1 Introduction.
• Added Figure 2.6 Series 2 Secure Loader Example on page 8 to 2.5 Secure Loader.
• Added 2.6 Secure Boot Time.
• Added 2.7 Secure Boot Configuration. Moved Sign Key and Secure Boot Enable Flag to this section.
• Added 3.1.2 Using an External Tool, 3.1.3 Using a Platform Example, and 3.1.4 Generate Key and Signing to 3.1 Overview.
• Added 3.2.2 SE Manager Key Provisioning Platform Example to 3.2 Provision Public Sign Key and Secure Boot Enabling.
• Added 3.4.1 Generate an Unsigned GBL Image to replace Overview section in Secure Boot.
• Added 3.4.2 Generate an Unsigned Application Image to Secure Boot.
• Updated 3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot and 3.4.4 Signing for Certificate-Based Secure Boot in Secure Boot.
• Added 3.4.5 Generate a GBL Upgrade Image File to Secure Boot.
• Added 3.4.6 Upload a GBL Upgrade Image File to Secure Boot.
• Added 3.5 Upgrade to Certificate-Based Secure Boot and 3.6 Certificate Revocation to 3. Examples.
• Updated 3.7 Upgrade to Secure Boot with RTSL and 3.8 Recover Devices when Secure Boot Fails in 3. Examples.
• Added 4. Debugging on Secure Boot Enabled Device

Revision 0.3

July 2020
• Added SE conventions to Introduction.
• Updated Figure 2.1 and Figure 2.2 to Simplicity Studio 5.
• Updated Simplicity Commander version to 1.9.2 in Using Simplicity Commander.
• Renamed Provision Public Sign Key to Provision Public Sign Key and Secure Boot Enabling, added note for HSE-SVH devices.
• Added ECDSA-P256-SHA256 Secure Boot and Certificate-Based Secure Boot to Examples.
• Added SE Manager examples to Upgrade to Secure Boot with RTSL.
• Removed the Related Documents section in favor of web links in the text.

AN1218: Series 2 Secure Boot with RTSL
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 79

Revision 0.2

March 2020
• Added figure to Secure Boot (ECDSA) in Series 1 Devices section.
• Added SE and VSE to Secure Boot (ECDSA) in Series 2 Devices section.
• Added figures to Secure Boot (ECDSA) in Series 2 Devices section.
• Added Secure Boot (Certificate) in Series 2 Devices section.
• Added Upgrade to Secure Boot with RTSL example.
• Combined all examples into one section and updated the content.
• Added Related Documents section.

Revision 0.1

August 2019
• Initial Revision.

AN1218: Series 2 Secure Boot with RTSL
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 80

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Series 2 Device Security Features
	1.1 User Assistance
	1.2 Key Reference
	1.3 SE Firmware

	2. Secure Boot Process
	2.1 Introduction
	2.2 ECDSA-P256-SHA256 Secure Boot in Series 1 Devices
	2.3 ECDSA-P256-SHA256 Secure Boot in Series 2 Devices
	2.3.1 HSE
	2.3.2 VSE

	2.4 Certificate-based Secure Boot in Series 2 Devices
	2.5 Secure Loader
	2.6 Secure Boot Time
	2.7 Secure Boot Configuration
	2.7.1 SSB
	2.7.2 Application Firmware

	3. Examples
	3.1 Overview
	3.1.1 Using Simplicity Commander
	3.1.2 Using an External Tool
	3.1.3 Using a Platform Example
	3.1.4 Generate Key and Signing

	3.2 Provision Public Sign Key and Secure Boot Enabling
	3.2.1 Simplicity Commander
	3.2.2 SE Manager Key Provisioning Platform Example
	3.2.3 Simplicity Studio

	3.3 Provision GBL Decryption Key
	3.3.1 Simplicity Commander
	3.3.2 SE Manager Key Provisioning Platform Example

	3.4 Secure Boot
	3.4.1 Generate an Unsigned GBL Image
	3.4.1.1 AppBuilder
	3.4.1.2 Bootloader-core Software Component

	3.4.2 Generate an Unsigned Application Image
	3.4.3 Signing for ECDSA-P256-SHA256 Secure Boot
	3.4.4 Signing for Certificate-Based Secure Boot
	3.4.5 Generate a GBL Upgrade Image File
	3.4.6 Upload a GBL Upgrade Image File

	3.5 Upgrade to Certificate-Based Secure Boot
	3.6 Certificate Revocation
	3.7 Upgrade to Secure Boot with RTSL
	3.8 Recover Devices when Secure Boot Fails

	4. Debugging on Secure Boot Enabled Device
	4.1 Simplicity IDE
	4.2 IAR

	5. Failure Analysis
	6. Revision History

